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Abstract

Self- and semi-supervised learning have achieved great success in modeling lan-
guages, images and videos with the help of unlabeled data. However, the existing
self- and semi-supervised learning methods rely on the specific structure of the
data, which makes them harder to extend to the domain of tabular data. Recently,
auto-encoder based self- and semi-supervised learning approach VIME has been
proposed for tabular data. But auto-encoder may memorize the input and may not
provide more informative signals in the representation than the original input. In
this work, we provide a setting under which unlabeled data can help create useful
representations for the supervised tasks. And we propose COnditional REgulariza-
tion (CORE) in addition to the reconstruction loss in auto-encoder approaches to
ensure our learned code capture useful signals for the downstream tasks. We show
the priority of our regularization in one simulation and two real-world tasks.

1 Introduction

Tabular data is one major type of data in daily life. Deep learning has achieved state-of-the-art
performance in modeling tabular data [27, 1]. The success of deep models requires a large labeled
dataset. However, labels may not always be available in real life tasks. For example, if a patient
does not come back to the hospital again after a single visit, we may lose the label information to
determine whether they may have heart failure in 10 years. Self- and Semi- supervised learning
methods provide effective ways to utilize the unlabeled data in images [8, 10, 7, 23, 24, 37, 30, 26,
25, 14, 4, 13, 11, 5, 16], text [21, 17, 3, 6, 20, 18, 19, 9, 36], videos [32, 33, 22, 31, 10], and recently
tabular data [35, 1, 34]. In the recent work VIME [35], auto-encoders use unlabeled data to help learn
predictive representations. The encoder creates a representation from a corrupted version of the input
and the decoder reconstructs the input from the representation. However, there is no guarantee that
the representation can capture the most useful information in the input that determines the label. The
encoder may just memorize the input and the decoder can finish the reconstruction task by itself.

In this work, we study a data generation assumption where unlabeled data can help create useful
representations for supervised tasks. In this setting, we propose self-supervised COnditional REgu-
larization (CORE), which ensures that auto-encoders’ codes capture useful signals for downstream
predictions while discarding datapoint-specific noise. This objective is easily combined with the usual
auto-encoder reconstruction loss. We also propose semi-supervised CORE which acts as a consistency
loss. Our approach is motivated by [28], which recovers latent confounders in a causal setting by
limiting the additional mutual information between one treatment and the confounder given other
treatments. CORE limits the mutual information between one feature and the latent representation
given other features. The CORE loss plays a similar role as the additional mutual information in [28].
CORE prevents the encoder from memorizing individual noise in the features. CORE outperforms
denoising auto-encoders, context auto-encoders and VIME in a simulation experiment and competes
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Figure 1: Graphical model of the data generation process.

with the baselines in two real-world experiments on Higgs-Boson identification, and in-hospital
mortality prediction.

2 Proposed model: CORE

In this section, we first introduce the key assumption in this work: unlabeled data can help build
informative representations for downstream tasks. We then propose our method CORE. Throughout
this work, we use the subscript i to denote the i-th datapoint and we use the superscript j to denote
the j-th dimension in a single input X .

2.1 Assumption

We assume the generation of the input X ∈ RM and outcome Y ∈ R is the following. A low-
dimensional signal W ∈ RD is first drawn from p(W ), where D < M and individual noises U j

are independently drawn from p(U j) for j = 1, . . . ,M . Our observed input Xj is generated from
p(Xj |W,U j) for j = 1, . . . ,M and outcome Y is generated from p(Y |W ). The graphical model of
the data generating process is shown in Figure 1. Under these assumptions, predicting Y requires
estimation of W and learning to infer W is possible on unlabeled X .

2.2 Self-supervised CORE

We now introduce self-supervised learning on unlabeled data X . Suppose we have an encoder enc
and a decoder dec in an auto-encoder. The key insight of the CORE algorithm is to prevent the
encoder from memorizing X , while still achieving good reconstruction loss. This discards the noise
from U not helpful for predicting Y while recovering W , which does predict Y .

For a given input X , CORE first creates X̂(j) that has the j-th dimension replaced by samples
from p(Xj |X−j). Sampling from p(Xj |X−j) for each j seems to require M different conditional
distribution estimators. But with the help of DDLK [29], we only need to generate one knockoff
X̃ . For any index set S, the knockoff X̃ generated by DDLK satisfies the property (X̃,X)

d
=

(X̃,X)swap[S], where for j ∈ S, the swapping operation exchanges X̃j and Xj . After generating X̃
using DDLK, we set X̂(j)j = X̃j and X̂(j)−j = X−j where X is the original input. This algorithm
ensures that each X̂(j) is sampled from P (Xj |X−j). This simplifies the M conditional sampling
processes. Then we introduce our conditional regularization (CORE):

M∑
j=1

EX,X̂(j)‖dec(enc(X))− dec(enc(X̂(j)))‖22

The encoder is used for downstream prediction of Y . If the encoder memorizes Xj , then the CORE
loss will be large due to the conditional resampling of the j-th dimension in X̂(j). Since it is possible
for the encoder to memorize X and X̂ and for the decoder to minimize the objective, we keep
the decoder constant in the CORE loss i.e., we do not take the gradient descent with the decoder
parameters in the regularization loss. We denote this decoder as ng(dec) (for “no gradient").
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Method MSE

Supervised Supervised Linear Regression 9444.25
PCA 11.75

Self-Supervised

CORE 1.17 ± 0.05
Denoising Auto-encoder 108.93± 6.80

Context Encoder 1.49± 0.05
VIME 104.07± 3.00

Table 1: MSE of all the methods on the simulation experiment

Together with the reconstruction loss in the auto-encoder, CORE minimizes the following objective
over the encoder and the decoder:

EX‖dec(enc(X))−X‖22 + α ·
M∑
j=1

EX,X̂(j)‖ng(dec)(enc(X))− ng(dec)(enc(X̂(j)))‖22,

where α is a trade-off parameter between the reconstruction loss and the regularization loss. If we
have downstream tasks, α can be selected on the validation performance on the downstream tasks.

2.3 Semi-supervised CORE

Suppose we still have an encoder that learns a representation and a predictor f to predict the label.
Then we minimize the following semi-supervised learning loss:

EX,Y lsup(f(enc(X)), Y ) + β ·
M∑
j=1

EX,X̂(j)lc(f(enc(X)), f(enc(X̂(j)))),

where β is a trade-off parameter between the supervised loss lsup and the consistency loss lc, which
can be determined by validation performance. This is similar to the semi-supervised objective in
VIME [35].

3 Experiments

For self-supervised learning, we compare the proposed CORE method with the following baselines:
self-supervised VIME, denoising auto-encoders, and context encoders. For semi-supervised learning,
we compare with semi-supervised VIME. We also study self+semi-supervised training, which first
trains the encoder using self-supervised learning and then uses semi-supervised training to finetune
the pretrained encoder and train the predictor. We compare against self+semi-supervised VIME. The
description of baselines, datasets, train/valid/test split and implementation details can be found in
appendix B. A sensitivity analysis of hyperparameters and number of labeled training points can be
found in Appendix A.

3.1 Simulation Experiment

In this simulation, we use a linear model to simulate data (xi, yi) according to the graphical model
in Figure 1 . The goal is to predict the output yi from the input xi. More details can be found in
Appendix B.3. We use a linear layer for the encoder and decoder. For the supervised training, we use
the close-form solution from linear regression from representation enc(X) to Y . We compare mean-
squared error (MSE) for each method. The results are shown in Table 1. Our method performs better
than all baselines. In this experiment, we also compare against PCA, which aims to find components
that maximize variance so it will choose the noisy but possibly non-informative dimensions. PCA
does not do well on this task. We only study the self-supervised case for this simple linear example.

3.2 Higgs Bosons

The goal of the Higgs task [2] is to distinguish Higgs Bosons from background signals using the
features obtained by the detectors. We compare the accuracy of all methods in Table 2. Self-
supervised CORE outperforms all methods. Semi-supervised and Self+Semi-supervised CORE also
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Method Accuracy

Supervised 4-layer perceptron 0.6055± 0.0041
2-layer perceptron 0.6101± 0.0032

Self-supervised

CORE 0.6692 ± 0.0055
Denoising Auto-encoder 0.6088± 0.0055

Context Encoder 0.6096± 0.0154
VIME 0.6675± 0.0056

Semi-supervised CORE 0.6189± 0.0078
VIME 0.6115± 0.0118

Self + Semi-supervised CORE 0.6667± 0.0058
VIME 0.6595± 0.0048

Table 2: Accuracy of all the methods on Higgs dataset

Method AUC

Supervised 4-layer perceptron 0.7837± 0.0029
2-layer perceptron 0.7790± 0.0021

Self-supervised

CORE 0.7941± 0.0051
Denoising Auto-encoder 0.7918± 0.0053

Context Encoder 0.7806± 0.0042
VIME 0.7914± 0.0028

Semi-supervised VIME 0.7994± 0.0037
CORE 0.7992± 0.0048

Self+Semi-supervised VIME 0.7889± 0.0037
CORE 0.7930± 0.0027

Table 3: AUC of all the methods on In-hospital Mortality Prediction

beat the semi-supervised and self+semi-supervised VIME. On this dataset, although semi-supervised
training is better than the supervised ones, self+semi-supervised training does not outperform the
self-supervised-only approach.

3.3 In-hospital Mortality Prediction

The goal of this task is to predict in-hospital mortality based on the first 48 hours clinical variables
such as heart rate, temperature, and blood pressure. We compare AUC of all methods in Table 3.
Self-supervised CORE achieves higher (better) AUC than all other methods. Self+semi-supervised
CORE also beats the self+semi-supervised VIME. Semi-supervised CORE and VIME have roughly
the same performance.

4 Conclusions

In this work, we present CORE, a regularization term that helps representations capture the informa-
tion shared among features using unlabeled data. In linear simulations, our method beats all baselines.
On real-world datasets, our method perform slightly better than the baselines. The linear simulation
strictly satisfies our assumptions, while they may not be satisfied in real-world datasets. For example,
if the features do not contain independent noise, then CORE may not work. If the features are all
categorical (gender, race etc.) (e.g. the UCI Income dataset in [35]), there is little chance for features
to have noise. Then CORE may not help to learn better representations. We show in this work
that CORE prevents memorization in auto-encoders under the tabular data setting which improves
performance in downstream tasks. Future work includes extending CORE to language and image
data.
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A Sensitivity Analysis

A.1 Hyperparameters α and β

Here we show the AUC on the in-hospital mortality prediction for different self-supervised regular-
ization scale α’s and semi-supervised regularization scale β’s in Figure 2. As we notice in the plot,
when α or β is too small, there is no regularization for the code space, and the performance is close to
the supervised baseline. When α or β is too large, the regularization may cause the encoder to learn a
constant code to minimize the regularization loss and therefore the supervised performance is bad.
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Figure 2: AUC versus different α’s and β’s.

A.2 Number of labeled training samples

We show the accuracy versus the number of labeled training samples for the two best method (self-
supervised VIME and CORE) on Higgs dataset in Table 4. As the number of labeled training samples
grow, the accuracy gets higher and Self-supervised CORE is always better than Self-supervised
VIME.

Num of labeled training samples Self-supervised VIME acc Self-supervised CORE acc
1000 0.6352± 0.0079 0.6357± 0.0070
5000 0.6561± 0.0074 0.6642± 0.0045

10000 0.6675± 0.0056 0.6692± 0.0055

Table 4: Self-supervised CORE and VIME accuracy on Higgs dataset
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B Baseline and Implementation Details

B.1 Baselines

VIME [35]: Pretext tasks are to recover an input sample x from its corrupted input and identify
the mask. The corrupted input x̂ is created by sampling a binary mask m and replace the masked
positions with marginal sample x̃ from the data.

x̂ = m� x̃+ (1−m)� x

The pretext tasks are

1. Predict the mask m from the corrupted input x̂

2. Recover the input x from the corrupted input x̂.

The representation learned from corrupted input that solves the pretext tasks is used in the downstream
tasks. In the test time to learn a supervised MLP, they use the true x as the input for the encoder
instead of the corrupted input.

In a semi-supervised regime, the unlabeled data is used to construct a consistency loss. The final loss
is the supervised loss on the labeled data + consistency loss from the unlabeled data.

Context encoder [26]: The pretext task is inpainting. The goal is to learn a representation to fill
in the masked features from the unmasked features. They first sampling a binary mask m and the
inpainting task aims to minimize

‖(1−m)� (dec(enc(m� (x)))− x)‖22

Denoising auto-encoder [30]: The pretext task is to learn the representation using an auto-encoder
by reconstruction of x from a corrupted version of x. This corrupted version can be adding Gaussian
noise to x or randomly replacing some values of x with zero. Since randomly masking values has
been used in VIME and context encoder, we only consider adding Gaussian noise corruption here.
The corrupted input is created by

x̂ = x+ a ∗ ε,
where a is a hyperparameter and ε is sampled from the standard normal distribution. The denoising
auto-encoder aims to minimize

‖dec(enc(x̂))− x‖.

For the supervised learning on the labeled dataset, we consider PCA and linear regression on the
linear simulation and multi-layer perceptrons for the real-world datasets. In the real-world datasets,
we use a 2-layer perceptron for the encoder, decoder and predictor for CORE and the baselines. We
consider a 2-layer perceptron which corresponds to the predictor and a 4-layer perceptron which
corresponds to encoder + predictor as the supervised baselines.

B.2 Datasets

B.3 Simulation

We first sample θ uniformly from [-1, 1] and A ∈ R20×1 whose element is sampled i.i.d. uniformly
from [-1,1]. We fix θ and A once sampled. We set a = 0.1. Then we sample wi ∈ R and noise
εyi
∈ R from standard Gaussian. And we create the output yi ∈ R by

yi = θTwi + εyi

The input xi has 100 dimensions. We sample εxi
∈ R20 from standard Gaussian. Then we create the

first 20 dimensions of xi by

xi = Awi + a ∗ εx,

We sample the other 80 dimensions of xi i.i.d from N(0, 10). These 80 dimensions have large
individual noise.
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B.3.1 Higgs Bosons

The data is simulated using Monte Carlo methods1. The features include kinematic properties
measured by the particle detectors (first 21) and functions of the first 21 features (last 7). The features
are observed with observation noise. Our method is suitable for this dataset. The dataset is roughly
balanced.

B.3.2 In-hospital Mortality Prediction

In this experiment, we use data from a freely available critical care dataset MIMIC-III [15]2. We
create an in-hospital mortality prediction task based on [12]3. The goal is to predict in-hospital
mortality based on the first 48 hours clinical variables such as heart rate. temperature, and blood
pressure. There are 17 clinical variables. They are presented as time-series. To make it tabular, we
choose the maximum of the features in the first 24 hours and the maximum of the features in the last
24 hours. Then there are 34 tabular features. We use these feature as the input. A person’s clinical
variable may vary a lot during the day and has a lot of individual noise so CORE is suitable for
clinical predictions.

B.4 Train/valid/test Split

B.4.1 Simulatuon Experiment

We sample 7,500 unlabeled data x (5,000 for self-supervised training the encoder and 2,500 for
validation) and 2,00 labeled pairs (x, y) (1,00 for training, 50 for validation and 50 for test) for
supervised training.

B.4.2 Higgs Bosons

The whole dataset has 11,000,000 datapoints. We randomly select 50,000 unlabeled datapoints for
training and 25,000 for validation in the self-supervised task and 5,000 for training, 2,500 each for
validation and testing in the supervised task.

B.4.3 In-hospital Mortality Prediction

In this task, we only have 21,139 data points in total. We use 60% for unlabeled training and 20% for
unlabeled validation. We use 10% for labeled training and 5% each for labeled validation and test.

B.5 Implementation Details

We explore batch size from {100, 500, 1000}, learnging rate from {0.001, 0.004, 0.0001, 0.0004},
self-supervised regularization scale α from {0.01, 0.1, 1.0, 10.0, 100.0, 1000.0} and semi-supervised
regularization scale β from {0.01, 0.1, 1.0, 10.0}. In the linear simulation, the representation size is
chosen from {1, 5, 10}. In real-world datasets, the representation size is chosen from {50, 100}. We
use a linear encoder and decoder for the linear simulation and a two layer MLP with ReLU activation
and hidden size 300 encoder and decoder for the real-world datasets. We report the test performance
on the hyperparameter that achieves the best validation metric. An analysis of sensitivity to data size
and hyperparameters is included in Appendix A. All the experiments are done on internal clusters
which include RTX 8000 and V100. We report the mean and standard deviation of the results over
three different seeds.

1The data can be obtained from here: https://archive.ics.uci.edu/ml/datasets/HIGGS
2We can request access of this de-identified data here https://mimic.mit.edu/iii/gettingstarted/
3We use the code from https://github.com/YerevaNN/mimic3-benchmarks, MIT license
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