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Abstract

InfoNCE-based contrastive representation learners, such as SimCLR [1] and MoCo
[2], have been tremendously successful in recent years. However, these contrastive
schemes are notoriously resource demanding, as their effectiveness breaks down
with small-batch training (i.e., the log-K curse, whereas K is the batch-size). In
this work, we reveal mathematically why contrastive learners fail in the small-
batch-size regime, and present a novel simple, non-trivial contrastive objective
named FlatNCE, which fixes this issue. Unlike InfoNCE, our FlatNCE no longer
explicitly appeals to a discriminative classification goal for contrastive learning.
Theoretically, we show FlatNCE is the mathematical dual formulation of InfoNCE,
thus bridging the classical literature on energy modeling; and empirically, we
demonstrate that, with minimal modification of code, FlatNCE enables immediate
performance boost independent of the subject-matter engineering efforts. The
significance of this work is furthered by the powerful generalization of contrastive
learning techniques, and the introduction of new tools to monitor and diagnose con-
trastive training. We substantiate our claims with empirical evidence on CIFAR10
and ImageNet datasets, where FlatNCE consistently outperforms InfoNCE.

1 Introduction
Due to their superior effectiveness [3, 4], easy implementation [5], and strong theoretical connection to
mutual information (MI) estimation [6], contrastive representation learning has gained considerable
momentum in recent years [7–11], especially in self-supervised learning setups [2, 1, 12, 13]. Despite
encouraging progress, there are still many unresolved issues with contrastive learning, with the
following three particularly relevant to this investigation:

(i) contrastive learners need a very large number of negative samples to work well [6];
(ii) the bias, variance, and performance tradeoffs are in debate [14, 15];

(iii) the lack of principled training diagnostic tools.
Among these three issues, (i) is most concerning: it implies training can be very expensive, and
the needed massive computational resources may not be widely available. This has largely limited
potential applications with more complex models or in budgeted scenarios. Even when such computa-
tional resources are accessible, the costs are prohibitive, and arguably entails a large carbon footprint.
Consequently, large-scale contrastive training has essentially become a “rich man’s club”, with only
resource affluent institutions in the game.

We believe addressing (ii) and (iii) holds the key to resolving (i), promising more affordable training
of self-supervised learning for smaller teams and broader applications. Motivating our development
is the major inconsistency between theory and practice is that, contrary to expectation, more biased
estimators such as InfoNCE work better in practice than their tighter counterparts [16]. The prevailing
conjecture is that these biased contrastive learners benefit from a lower estimation variance [14, 17].
However, this conjecture is mostly based on experimental observations rather than formal variance
analyses [18], and the comparison is not technically fair since the less biased estimators use far
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less samples [6, 19, 4]. Such incomplete understandings are partly caused by the absence of proper
generic diagnostic tools to analyze contrastive learners. In this study, we hope to improve both the
understanding and practice of contrastive representation learning via bridging these gaps.
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Figure 1: FlatNCE learns better representation
when InfoNCE starts to struggle as mini-batch es-
timate approaches the log-K limit. Solid lines are
the mini-batch estimate of representation MI, break
lines are the ground-truth MI (higher is better), and
the dashed line marks the log-K saturation.

Our development starts with a critical insight
that challenges current beliefs: the poor learning
efficiency of InfoNCE-based contrastive learn-
ers at small-batch regime is primarily due to
floating-point overflow, not because of the larger
bias it has suffered. This novel perspective mo-
tivates a simple, effective fix named FlatNCE
that requires only one-line change of code rel-
ative to InfoNCE. Figure 1 visualizes our find-
ings: while the InfoNCE and our FlatNCE are
subjected to the same small-sample bias, the rep-
resentation learned by the latter is much better.
Apart from the above simple heuristic from an
engineering perspective, we also back up our
FlatNCE with solid mathematical analyses, un-
veiling its deep roots in statistical physics and
convex optimization.

Importantly, our research brings new insights into contrastive learning. We embrace an energy
modeling view [20], and show appealing to a cross-entropy-based predictive objective as in InfoNCE
is suboptimal. This echoes recent attempts in building non-discriminative contrastive learners [21],
and to the best of our knowledge, we provide the first of its kind that comes with rigorous theoretical
guarantees. Further, FlatNCE inspires a set of diagnostic tools that will benefit the contrastive
learning community as a whole [14].

2 Why Is InfoNCE Failing at Small Batch-sizes (The log-K Curse)
Despite InfoNCE’s sweeping successes, here we provide a careful analysis to reveal that as the
empirical InfoNCE estimate approaches saturation (i.e., ÎInfoNCE → logK), its learning efficiency
plunges due to limited numerical precision, which clarifies InfoNCE’s small-sample collapse.

Recall InfoNCE is a multi-sample mutual information estimator built on the idea of noise contrastive
estimation (NCE) [22]1. It was first described in [5] under the name contrastive predictive coding
(CPC), and later formalized and coined InfoNCE in the work of [6]. Formally defined by

IKInfoNCE(X;Y |g) , E(xi,yi)∼p(x,y)

[
log

exp(g(xi, yi))
1
K

∑K
j=1 exp(g(xi, yj))

]
, (1)

it constructs a formal lower bound to the mutual information, i.e., IKInfoNCE(X;Y |g) ≤ I(X;Y ). Here
g(x, y) ∈ R is known as the critic function and K is the mini-batch size.

In practice the InfoNCE loss is computed from the CrossEntropy loss. For most deep learning
platforms, the internal implementations exploit the logsumexp trick `CE = logsumexp({gij}) −
gii = {log(

∑
j exp(gij − gmax))+ gmax}− gii, to avoid numerical overflow, where gij , gθ(xi, yj)

and gmax , maxj gij . With a powerful learner for gθ(x, y) and a small K such that I(X;Y ) >

logK, we can reasonably expect ÎInfoNCE ≈ logK after a few training epochs. Since gii itself is also
included in the negative samples, this implies gii � gij , ∀j 6= i almost always holds true, because
ÎInfoNCE = log exp(gii)

1
K

∑
j exp(gij)

≈ log exp(gii)
1
K exp(gii)

= logK, the contrast now becomes

`CE = gii + log(
∑

j
exp(gij − gii))− gii = gii + log(1 + o(1))− gii ≈ 0, (2)

where o(1) is the common notation for the terms that are small enough to be negligible.

This is where the InfoNCE algorithm becomes problematic: for low-precision floating-point arith-
metics, e.g., float32 or float16 as in standard deep learning applications, the relative numerical

1In some contexts, it is also known as negative sampling [23].
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error is large when two similar numbers are subtracted from one another. The contrastive terms
gij − gii, which are actually contributing the learning signals, will now be the o(1) term that is
engulfed by the dominating gii. In other words, InfoNCE has a low signal-to-noise ratio (SNR)
when it approaches the log-K saturation due to rounding errors (see Figure 2). With slight abuse of
notation, we call it the log-K curse2.

3 Making It Flat: Fixing InfoNCE With Term-dropping FlatNCE
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Figure 2: Comparison of model gradi-
ents with different batch-sizes (small=32,
large=512). Consistent with our analyses,
InfoNCE gradients show larger variance at
small batch. Details see Appendix Section E.

Motivated by the discussions above, we build such a sur-
rogate objective that overcomes InfoNCE’s difficulties.
Incentivized by InfoNCE’s successes due to small esti-
mating variance, we want the resulting objective to en-
joy a low-variance profile. Taking this to the extreme,
we propose FlatNCE, a zero-variance mini-batch, self-
normalized contrastive objective implicitly optimizes MI

IFlatNCE =
∑
j 6=i exp(gθ(xi,yj)−gθ(xi,yi))

detach[
∑
j 6=i exp(gθ(xi,yj)−gθ(xi,yi))]

, (3)

where detach[fθ(x)] bars gradient back-propagation.
For intuition, minimizing (3) heuristically forces a larger
gap between the positive score g(xi, yi) and negative score g(xi, yj), i 6= j, which is consistent
with InfoNCE’s behavior. (3) explicitly excluded the "gold" positive pair (xi, yi), highlighting a
key difference to InfoNCE, where the positive pair is intentionally retained. Note IFlatNCE ≡ 1 for
arbitrary inputs3, albeit confusing this fulfills the zero-variance property. As an important remark,
while the loss is zero-variance, the gradients are not.

We can in fact rigorously prove FlatNCE formally connects to InfoNCE and more broadly mutual
information estimation (details relegated to our Appendix Section E). Mathematically, the gradient
of FlatNCE equals to that of the InfoNCE also with the gold pair removed from the denominator
(i.e., the term-dropping InfoNCE). However, term-dropping InfoNCE essentially recovers the TUBA
estimator which is known to associated with unstable training and poor performance in practice
[6, 24]. This is more of numerical reasons that is overcome by the FlatNCE expression. What makes
this particularly interesting is that FlatNCE can be considered the conjugate dual of InfoNCE in the
view of convex optimization [25]. Specifically, via leveraging the Fenchel-Legendre duality trick
[26, 27], we prove FlatNCE objective (3) recovers a batch-size independent tight MI bound recently
proposed in [24], up to a non-gradient contributing term (which we put back when plotting Figure 1).

4 Effective Sample-size Scheduling For Contrastive Training
Existing contrastive training schemes use a temperature hyper-parameter β to tune the scale of
gθ = β · g̃θ, where g̃ is usually bounded between [-1,1] based on cosine similarity. β is known to be
crucial for performance tuning, and currently there is no principled tuning heuristics. Our analyses
above motivates us to introduce Effective Sample-Size (ESS), a normalized diagnostic statistics to
monitor and tune contrastive training

ESS , 1/{K
∑

j
w2
j} ∈ [1/K, 1], where wj =

exp(gθ(xi, yj)− gθ(xi, yi))∑
j′ 6=i exp(gθ(xi, yj′)− gθ(xi, yi))

. (4)

A small ESS implies signal only comes from a small fraction of data (as in the InfoNCE failure case),
and consequently less stable (see further analysis in Proposition S2). We hypothesized that contrastive
learning would be most efficient if it draws signal from a more diverse sample pool, but does not
absorb all info indiscriminately. That is to say, a moderate ESS should work best. These intuitions
are verified in our experiments: Figure 6 shows for the best-performing temperature, FlatNCE has a
larger ESS; and in Figure 7, we fixed ESS during training and confirm the model performs best for a
moderate ESS∈ [0.2, 0.4]. Please consult our Appendix Section E for details.

5 Self-supervised Learning Experiments
To validate our proposal, we benchmark FlatNCE against state-of-the-art solution SimCLR [1]. All
experiments are implemented with PyTorch and executed on a maximal of at 4 NVIDIA V100 GPUs.

2In other contexts, the log-K curse sometimes refers to the fact that the variance of a (sharp) non-parametric
MI estimator grows exponentially wrt ground-truth MI [18].

3Note that the gradient of FlatNCE is not flat, that is why we can still optimize the representation.

3



0 50 100 150 200 250 300 350 400
Training Epochs

76

78

80

82

84

86

88

To
p1

 T
es

t A
cc

ur
ac

y
FlatNCE-16

Self-supervised Learning
Cifar10, ResNet50

FlatCLR-32
FlatCLR-64
FlatCLR-128
FlatCLR-256

SimCLR-32
SimCLR-64
SimCLR-128
SimCLR-256
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ison for SimCLR and FlatCLR on
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Figure 5: Representation
MI strongly correlates
with performance.
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Figure 6: Evolution of ESS for Figure 1,
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Figure 7: ESS scheduling results. Contrastive
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Table 1: ImageNet SSL results.

Epoch 10 20 30 40 50 60 70 80 90 100

Top-1 SimCLR 40.93 46.22 48.64 50.14 52.14 53.62 55.20 56.36 56.99 57.13
Acc FlatCLR 42.40 47.69 49.96 52.27 54.11 55.48 56.98 58.21 58.80 59.74

Top-5 SimCLR 65.34 70.92 73.63 75.38 76.90 78.24 79.59 80.58 80.85 81.00
Acc FlatCLR 67.17 72.61 74.59 76.77 78.29 79.67 81.06 82.19 82.71 83.18

Table 2: ImageNet SSL transfer learning results.

Dataset Cifar10 Cifar100 VOC2007 Flower SUN397

Linear evaluation SimCLR 87.74 65.40 69.38 90.03 49.62
FlatCLR 87.92 65.76 69.66 90.23 51.31

Fine-tune SimCLR 94.61 76.67 69.57 93.58 56.97
FlatCLR 95.50 78.92 70.73 95.02 58.37

Setup. Our follow the settings in [1] and our codebase is modified from a public PyTorch SimCLR
implementation4. Specifically, we train 256-D feature by maximizing the self-MI between two
random views of data, and report the test set classification accuracy using a linear classifier trained to
convergence. We report performance based on ResNet-50, and analyze the learning dynamics using
the smaller ResNet-18 for quick iterations. For detailed settings consult our Appendix Section I.

Main results. In Figure 3, we evaluate the quality of representations learned with different batch-sizes
using ResNet-50 on Cifar10. FlatCLR showed superior small-batch efficiency: with only BS=32,
FlatCLR matches the performance of SimCLR at BS=256, which is an 8× boost. Figure 4 showed we
can use linear learning rate scaling to speedup convergence with larger batch-sizes. Figure 5 showed
ground-truth representation self-MI strongly correlates with model performance, which proved tighter
bounds give worse performance only when they are not effectively optimizing the representation.
Finally, we show ImageNet SSL results in Table 1, and SSL transfer learning results in Table 2,
where FlatCLR leads consistently. More results and analyses are in our Appendix Section I.

4https://github.com/sthalles/SimCLR
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A The Staggering Cost of Training Contrastive Learners

In Table S1 we summarize the associated cost of training state-of-the-art contrastive learners. We
have used the numbers from the original papers to compute the cost. The number of devices and
time of training for the largest model reported in the respective papers are used, while we use the
online quotes from Google Cloud (for TPU units) and Amazon AWS (for GPU units) for the hourly
cost of dedicated computing devices. We only focused on the computation cost, so the potential
charges from storage and network traffic are omitted. Note that this table only reports the number
of computing devices used in the final training where all parameters have been tuned to optimal,
the actual expenditures associated with the development of these models can be significantly higher.
Usually researchers and engineers spent more time tuning the parameters and exploring ideas before
finally come up with a model that can be publicized. Also, the cost for performance evaluation is not
count towards the cost, and some of the papers have employed intensive grid-search of parameters for
evaluation, which in our experience can be even more costly than training the contrastive learners at
times. And we do find fine-tuning evaluation can drastically boost the performance metrics.

Table S1: Cost of training a contrastive learner

Model Sponsor Neg. Size Infrastructure Train Time Est. Cost

MoCo [2] Facebook 65, 536 64 V100 GPUs 6 days $23k
SimCLR [1] Google 4, 096 128-core TPU-v3 15 hours $1,720
CLIP [8] OpenAI 32, 768 592 V100 GPUs 18 days $634k
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B More Background On Contrastive Learning

As a consequence of the superior effectiveness in self-supervised learning setups [3, 4] and their
relatively easy implementation [5], contrastive representation learning has gained considerable
momentum in recent years. Successful applications have been reported in computer vision [7, 2, 1, 12],
natural language processing [13, 8], reinforcement learning [9], fairness [10], amongst many others.

Originally developed for nonparametric density estimation, the idea of learning by contrasting positive
and negative samples has deep roots in statistical modeling [28]. In the seminal work of [29], its
connection to discriminative classification was first revealed, and early utilization of the idea was
celebrated by the notable success in training word embeddings [30, 31]. Framed under the name
negative sampling [23], contrastive techniques have been established as indispensable tools in scaling
up the learning of intractable statistical models such as graphs [32, 33].

More recently, surging interest in contrastive learners was sparked by the renewed understanding that
connects to mutual information estimation [5, 6]. Fueled by the discovery of efficient algorithms
and strong performance [1], extensive research has been devoted to this active topic [34]. These
efforts range from theoretical investigations such as generalization error analyses [14] and asymptotic
characterizations [21], to more practical aspects including hard-negative reinforcement [35, 36], and
sampling bias adjustment [37]. Along with various subject matter improvements [38–41, 13, 8],
contrastive learners now provide comprehensive solutions for self-supervised learning.

C Rethinking Contrastive Learning: Experimental Evidence & Discussions

We contribute this section to the active discussions on some of the most important topics in contrastive
learning.

Our discussions will be grounded on the new experimental results from Cifar10 with a ResNet
backbone, with a PyTorch codebase of the InfoNCE-backed SimCLR and its FlatNCE counterpart
FlatCLR. Note instead of trying to set new performance records (because of limited computational
resources in our university setting), experiments in this section are designed to reveal important
aspects of contrastive learning, and to ensure our results can be easily reproduced with reasonable
computation resources.

Breaking the curse, small-batch contrastive learning revived. We show that with our novel
FlatNCE objective, successful contrastive learning applications are no longer exclusive to the costly
large-batch training. In Figure 3 we see pronounced small-sample performance degradation for
SimCLR, while the FlatCLR is far less sensitive to the choice of batch size. In fact, we see FlatCLR-
16 matches performance of its SimCLR-128 counterpart, corresponding to an 8× boost in efficiency.
And in all cases FlatCLR consistently works better compared to the same-batch-size SimCLR. Despite
the encouraging improvements in the small-batch regime, large-batch training does provide better
results for both SimCLR and FlatCLR. Additionally, leveling up parallelism greatly reduces the
overall training time (Figure 4), as a larger batch-size enables stable training with a larger learning
rate [42–44] 5. The main merits of our result are: (i) the enabling of contrastive learning for very
budgeted applications, where large-batch learning is prohibitive; and (ii) consistent improvement
over InfoNCE, especially wrt the cost-performance trade-off.

Is tighter MI bound actually better or worse? An interesting observation made by a few indepen-
dent studies is that, perhaps contrary to expectation, tighter bounds on MI do not necessarily lead to
better performance on the downstream tasks [16]. To explain this, existing hypotheses have focused
on the variance and sample complexity perspectives [17]. To address this, we compare the actual MI
6 to the mini-batch MI estimate, and plot the respective typical training curves in Figure 1. Since
FlatNCE itself is not associated with a number to bound MI (because it is theoretically tight), we
use an InfoNCE estimate based-on the FlatNCE representation. Observe that although the sample
MI estimates are tied, FlatCLR robustly improves the ground-truth MI as SimCLR approaches the
log-K saturation point and become stagnant. To further understand how MI relates to downstream
performance, we plot the Top-1 accuracy against the true MI using all our model training checkpoints

5While learning rate scheduling does affect performance, it is beyond the scope of our current investigation.
6Ground-truth MI is approximated by InfoNCE using a very large negative sample pool (100X mini-batch).
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(Figure 5), and confirm a strong linear relation between the two (Pearson correlation ρ = 0.65,
p-value < 10−20). However, this link is not evident using the mini-batch sample MI (Figure S1).

ESS for monitoring and tuning contrastive learning. As an important tool introduced in this work,
we want to demonstrate the usefulness of ESS in contrastive training. Figure 6 plots ESS curves for
the training dynamics described in Figure 1, and we see drastically different profiles. As predicted by
our analyses, SimCLR’s ESS monotonically decreases as it approaches the InfoNCE saturation (from
0.06 to 0.05), while FlatNCE-ESS instead climbs up (0.17→ 0.35). The performance gap widens as
the ESS difference becomes larger, thus confirming the superior sample efficiency of FlatNCE. Next
we experimented with ESS-scheduling: instead of a fixed temperature, we fix the ESS throughout
training, and then compare model performance. Figure 7 shows a snapshot of training progress per
targeted ESS value at epoch 50, where the estimated MI just started to plateau. The result indicates
ESS range [0.15, 0.4] works well for Cifar10, while SimCLR with fixed temperature only covers the
sub-optimal [0.04, 0.06]. These interesting observation warrant further future investigations on ESS
control in contrastive training.

Self-normalized contrastive learning as constrained optimization. Here we want to promote a
new view, which considers self-normalized contrastive learning as a form of constrained optimization.
In this view, including multiple negative samples in the update of the critic function is necessary
for contrastive learning. This conclusion comes from our numerous failed attempts in designing
alternative few-sample contrastive learning objectives that simultaneously reduce estimation variance
and tighten the MI bound. Since the feature encoders are usually built with complex neural networks,
the representations can be rather sensitive to the changes in encoder parameters. So while the gradient
update direction may maximally benefit the MI estimate, it may disrupt the representation and thus
compromise the validity of the variational MI estimate. Including negative samples in the updates of
the critic gθ allows the use of negative samples to provide instant feedback on which directions are
bad, and to steer away from. More negative samples (i.e., a larger K) will enforce a more confined
search space, thus allowing the critic updates to proceed more confidently with larger learning
rates. Also, comparison should be made to importance-weighted variational auto-encoder (IW-VAE)
[45], which also leverages a self-normalized objective for representation learning and inference.
However, IW-VAE has been proven harmful to representation learning, although it provably tightens
the likelihood bound [46]. Finally, our new approach also promises to scale up & improve generalized
contrastive learning [47].

Connections to variational mutual information estimation. Table S2 summarizes representa-
tive examples of nonparametric variational MI bounds in the literature, whose difference can be
understood based on how information from negative samples are aggregated. Before InfoNCE,
Donsker-Varadhan (DV) [48] and Nguyen-Wainwright-Jordan (NWJ) [49] are the most widely prac-
ticed MI estimators. NWJ is generally considered non-contrastive as positive and negative samples are
compared, respectively, at log and exp scales. DV differs from InfoNCE by excluding the positive
sample from the negative pool, which is similar to the practice of our FlatNCE. However, DV is
numerically unstable and necessitates careful treatment to be useful [50]. Also note some literature
had unfairly compared the the multi-sample InfoNCE to the single-sample versions of its competitors,
partly because the alternatives do not have efficient multi-sample implementations. To the best
of our knowledge, closest to this research is the concurrent work of [24], where the contrastive
Fenchel-Lengendre estimator is derived. While developed independently from completely differ-
ent perspectives, FlatNCE enjoys the duality view promoted by [24] and inherits all its appealing
theoretical properties. Our theoretical and empirical results complemented nicely the theories from
[24].

D Contrastive Representation Learning with InfoNCE

Proposition S1. InfoNCE is an asymptotically tight lower bound to the mutual information, i.e.,

I(X;Y ) ≥ IKInfoNCE(X;Y |f), lim
K→∞

IKInfoNCE(X;Y )→ I(X;Y ). (5)

Proof. See [6] for a neat proof on how the multi-sample NWJ upper bounds InfoNCE. Since NWJ is a
lower bound to MI, InfoNCE also lower bounds MI.

What remains is to show the InfoNCE bound is asymptotically tight. We only need to prove that with
a specific choice of f(x, y), InfoNCE recovers I(X;Y ). To this end, let us set f(x, y) = f∗(x, y) =
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Table S2: Comparison of representative variational MI objectives. We use (xi, yi) to denote the
positive sample drawn from the joint density p(x, y), (xi, yj) where j 6= i, for the negative samples
from p(x)p(y), and m(x, y1:K) , 1

K

∑K
j=1 exp(g(xi, yj)). See the following table for more details.

Name Objective Bias Stability

Donsker-Varadhan [48] g(x,i yi)− log(
∑K
j=1 exp(g(xi, yj))/K) Large Poor

Nguyen-Wainwright-Jordan [49] g(xi, yi)−
∑K
j=1 exp(g(xi, yj)/K Low Okay

Fenchel-Legendre [24] u(xi, yi) +
∑K
j=1 exp(−u(xi, yj) + g(xi, yj)− g(xi, yi))/K Low Okay

InfoNCE [5] g(xi, yi)− log(m(xi, {yi, y1:K−1j })) Large Excellent

FlatNCE (Ours) {m(x, y1:Kj )− g(xi, yi)}/detach[{m(xi, y
1:K
j )− g(xi, yi}] Low Excellent

p(y|x)
p(y) , and we have

IKInfoNCE(f
∗) = EpK

[
log

(
f∗(xk, yk)

f∗(xk, yk) +
∑
k′ 6=k f

∗(xk, yk′)

)]
+ logK (6)

= −E

[
log

(
1 +

p(y)

p(y|x)
∑
k′

p(yk′ |xk)
p(yk′)

)]
+ logK (7)

≈ −E
[
log

(
1 +

p(y)

p(y|x)
(K − 1)Eyk′

p(yk′ |xk)
p(yk′)

)]
+ logK (8)

= −E
[
log

(
1 +

p(yk)

p(yk|xk)
(K − 1)

)]
+ logK (9)

≈ −E
[
log

p(y)

p(y|x)

]
︸ ︷︷ ︸

I(X;Y )

− log(K − 1) + logK (10)

(11)

Now taking K →∞, the last two terms cancels out.

A few technical remarks are useful for our subsequent developments: (i) the K-sample InfoNCE esti-
mator is upper bounded by logK; (ii) in practice, InfoNCE is implemented with the CrossEntropy
loss for multi-class classification, where f(x, y) is parameterized by its logit gθ(x, y) = log f(x, y);
(iii) optimizing for f(x, y) tightens the bound, and the bound is sharp if f(x, y) = p(x|y)ec(x),
where c(x) is an arbitrary function on X ; and (iv) InfoNCE’s successes have been largely credited to
the fact that its empirical estimator has much smaller variance relative to competing solutions.

E FlatNCE and Generalized Contrastive Representation Learning

E.1 Understanding FlatNCE

We first define the following variant of the FlatNCE

IFlatNCE(gθ) =
1 +

∑
j exp(gθ(xi, yj)− gθ(xi, yi))

1 + detach[
∑
j exp(gθ(xi, yj)− gθ(xi, yi))]

. (12)

Note that IFlatNCE(gθ) corresponds to adding the positive sample yi to the set of negative samples,
because the zero contrast of the positive sample always gives the constant one. The following
statement verifies IFlatNCE(gθ) is equivalent to InfoNCE in terms of differentiable optimization.

Proposition S1. ∇θIFlatNCE(gθ) = ∇θIInfoNCE(gθ).
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Proof. Without loss of generality we denote y0 as the positive sample and all yj , j > 0 as the negative
samples. Recall

CrossEntropyLoss(logits = gθ(x0, yj), label = 0) (13)

= − log
exp(gθ(x0, y0))∑
j exp(gθ(x, yj))

(14)

= log
∑

j
exp(gθ(x0, yj)− gθ(x0, y0)) (15)

Since∇ log f = ∇f
f , so

∇θIFlatNCE(gθ) = ∇θLCrossEntropy =
∇θ{

∑
j exp(gθ(x0, yj)− gθ(x0, y0))}∑

j exp(gθ(x0, yj)− gθ(x0, y0))
= ∇θIInfoNCE(gθ)

(16)
which concludes our proof (we omit the sign here for brevity).

Equation (12) and Proposition S1 indicate how InfoNCE and FlatNCE are connected. Based on this,
we continue our discussion on why InfoNCE fails for small batch sizes. We start by showing the
gradient of FlatNCE and its variant IFlatNCE (so equivalently, InfoNCE) is given by a self-normalized
importance-weighted gradient estimator, as formalized below.
Proposition S2. The gradient of FlatNCE is an importance-weighted estimator of the form

∇IFlatNCE =
∑

j
wj∇gθ(xi, yj)−∇gθ(xi, yi), where wj =

exp(gθ(xi, yj))∑
j′ exp(gθ(xi, y

′
j′)))

. (17)

Proof. Let us pick up from (16) from last proof, we have

∇IFlatNCE =
∇θ{

∑
j exp(gθ(xi, yj)− gθ(x0, yi))}∑

j exp(gθ(xi, yj)− gθ(xi, yi))
(18)

=

∑
j exp(gθ(xi, yj)− gθ(xi, yi))(∇θ{gθ(x0, yj)− gθ(xi, yi)})∑

j exp(gθ(xi, yj)− gθ(xi, yi))
(19)

=
∑

j
wj∇θgθ(xi, yj)− (

∑
j
wj)∇θgθ(xi, yi) (20)

=
∑

j
wj∇θgθ(xi, yj)− gθ(xi, yi) (21)

here wj , exp(gθ(xi, yj))/(
∑
j′ exp(gθ(xi, yj′))), as the term exp(−gθ(xi, yi)) has been canceled

out.

When ÎInfoNCE approaches logK, we know wi ≈ 1, wj 6=i ≈ 0, and consequently ∇IInfoNCE ≈
∇gθ(xi, yi)−∇gθ(xi, yi) = 0.

Consequently, as long as the positive sample is in the denominator the learning signal vanishes.
What makes matters worse, the low-precision computations employed to speed up training introduce
rounding errors, further corrupting the already weak gradient. On the other hand, in FlatNCE larger
weights will be assigned to the more challenging negative samples in the batch, thus prioritizing hard
negatives.

Proposition S2 also sheds insights on temperature annealing. Setting β 6= 1 re-normalizes the weights
by exponential scaling (i.e., wj(β) = wβj /

∑
j′ w

β
j′). So the optimizer will focus more on the hard

negative samples at a lower temperature (i.e., larger β), while for a higher temperature it treats all
negative samples more equally. This new gradient interpretation reveals that β affects the learning
dynamics in addition to the well-known fact that β modulates MI bound tightness.

Lastly, to fill in an important missing piece, we prove that FlatNCE is a formal MI lower bound.
Lemma S3. For {(xj , yj)}Kj=1, let IKInfoNCE(gθ) , − log 1

K

∑
j exp(gθ(xi, yj)− gθ(xi, yi)). Then

for arbitrary u ∈ R, we have inequality

IKInfoNCE(gθ) ≥ 1− u− 1

K

∑
j
exp(−u+ gθ(xi, yj)− gθ(xi, yi)), (22)

and the equality holds when u = 1
K

∑
j exp(gθ(xi, yj)− gθ(xi, yi)).
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Our proof is inspired by the technique used in [27] for non-parametric likelihood approximations,
which is based on the celebrated Fenchel-Legendre duality given below.

Definition S4 (Fenchel-Legendre duality [26]). Let f(t) be a proper convex, lower-semicontinuous
function; then its convex conjugate function f∗(v) is defined as f∗(v) = supt∈D(f){tv − f(t)},
where D(f) denotes the domain of function f [51]. We call f∗(v) the Fenchel-Legendre conjugate of
f(t), which is again convex and lower-semicontinuous. The Fenchel-Legendre conjugate pair (f, f∗)
are dual to each other, in the sense that f∗∗ = f , i.e., f(t) = supv∈D(f∗){vt− f∗(v)}.

Example. The Fenchel-Legendre dual for f(t) = − log(t) is f∗(v) = −1− log(−v).

Proof. Let us write InfoNCE as

IInfoNCE(g) = − log
∑

j
exp(gθ(x0, yj)− gθ(x0, y0)). (23)

Replacing the − log(t) term in IInfoNCE(t) with its Fenchel-Legendre dual −1 − log(−v), then
Proposition is immediate after properly rearranging the terms and write u = − log v.

What makes this particularly interesting is that FlatNCE can be considered the conjugate dual of
InfoNCE. In convex analysis, u and g in (22) are known as the Fenchel conjugate pair [26, 27, 24].
By taking the expectation wrt pK(x, y) and setting u({(xj , yj)}) to its optimal value, we essentially
recover IFlatNCE(gθ): the only difference to the conjugate of InfoNCE is the term (1 − u) which
is considered fixed and does not participate in optimization. As such, the following Corollary is
immediate7.

Corollary S5. IKFlatNCE(gθ) = IKInfoNCE(gθ) ≤ I(X;Y ), IKFlatNCE(gθ) ≤ I(X;Y ).

To make our proof simpler, we follow some theoretical results developed in [24], included below for
completeness.

Proposition S6 (The Fenchel-Legendre Optimization Bound, Proposition 2.2 in [24]).

IFLO(u, g) ,
{
Ep(x,y)p(y′) [u(X,Y ) + exp(−u(X,Y ) + g(X,Y ′)− g(X,Y ))]

}
+ 1 (24)

I(X;Y ) = −minu,g{IFLO(u, g)} (25)

Sketch of proof for Proposition S6. Recall the Donsker-Varadhan (DV) bound [48] is given by

IDV , Ep(x,y)[g(x, y)− log(Ep(y′)[exp(g(x, y′))])]. (26)

Then we proceed similarly to the proof of Lemma S3.

Remark. Here we consider g(x, y) as the primal critic and u(x, y) as the dual critic. Since arbitrary
choice of primal/dual critics always lower bounds MI, we can either jointly optimize the two critics,
or train in an iterative fashion: optimize one at a time while keep the other fixed. Let us consider the
case u is fixed and only update g, the proof below shows with an appropriate choice of u, Corollary
3.4 follows.

Proof of Corollary S5
Given gθ(x, y) and empirical samples {(xj , yj)}, let us set u(x, y) to

û∗(gθ) = log

(
1

K

∑
j
exp(gθ(xi, yj)− gθ(xi, yi))

)
(27)

Plug (gθ, û
∗) into the right hand side of Equation (9) proves û∗ + IFlatNCE − 1 lower bounds mutual

information. Since û∗ does not contribute gradient, we can consider IFlatNCE ≤ I(X;Y ) holds up to
a constant term. In other words, we are effectively optimizing a lower bound to MI, although IFlatNCE
does not technically a lower bound – this is still OK since the difference does not contribute learning
signal. �

7Using a similar technique, we can also show (3) lower bounds mutual information.
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E.2 Generalizing FlatNCE

The formulation of FlatNCE enables new possibilities for extending contrastive representation
learning beyond its original form. In this section, we discuss some generalizations that make
contrastive learning more flexible, including new tools for training diagnosis and tuning.

Hölder FlatNCE. To further generalize contrastive learning, we re-examine the objective of FlatNCE.
A key observation is that the numerator aggregates individual evidence of MI from the negative
samples (x, y′) ∼ p(x)p(y′) through the critic function gθ(x, y), with arithmetic mean. Possibilities
are that if we change the aggregation step, we also change how it learns MI in a way similar to the
importance weighting perspective discussed above. This inspires us to consider the more general
aggregation procedures, such as the Hölder mean defined below.
Definition S7 (Hölder mean). For {ai ∈ R+}i=1n and γ ∈ R, the Hölder mean is defined as

mγ({ai}ni=1) =
(
1
n

∑
i a
γ
i

) 1
γ .

Note Hölder mean recovers many common information pooling operations, such as min (γ = −∞),
max (γ =∞), geometric mean (γ → 0), root mean square (γ = 2), and arithmetic mean (γ = 1) as
employed in our FlatNCE. This allows us to define a new family of contrastive learning objectives.
Definition S8 (Hölder-FlatNCE).

Iγ ,
∑
i

mγ({exp(gij − gii}j)
detach[mγ({exp(gij − gii}j)]

. (28)

The following Proposition shows that Hölder-FlatNCE is equivalent to annealed FlatNCE.
Proposition S9. ∇Iγ(gθ) = 1

γ∇IFlatNCE(γ · gθ).

Proof. Denoting fj = exp(gj), and we have

∇Iγ(gθ) =
∇mγ({fj})
mγ({fj})

(29)

=

1
γ (

1
n

∑
j f

γ
j )

1
γ−1{γ 1

n

∑
j f

γ−1
j ∇fj}

( 1n
∑
j f

γ
j )

1
γ

(30)

=

∑
j f

γ−1
j ∇fj∑
j f

γ
j

(31)

=
∇
∑
j exp(γgj)

γ
∑
j exp(γgj)

(32)

=
1

γ
∇IFlatNCE(γ · gθ) (33)

As an important remark, we note the sample gradient of FlatNCE is a (randomly) re-scaled copy
of the true gradient (normalized by Zθ instead of Ẑθ), so we are still optimizing the model in the
right direction using stochastic gradient descent (SGD) [52]. This property can be used to ascertain
the algorithmic convergence of FlatNCE, formalized in the Proposition below. This is significant
because non-converging target objective been a big concern in representation optimization [4], and
the convergence theory of contrastive learners are currently missing.

E.3 Convergence of FlatNCE

Here we detail the technical conditions for the convergence of FlatNCE to hold. Our derivation
follows the analytic framework of generalized SGD from [27], included below for completeness.
Definition S10 (Generalized SGD, Problem 2.1 [27]). Let h(θ;ω), ω ∼ p(ω) be an unbiased stochas-
tic gradient estimator for objective f(θ), {ηt > 0} is the fixed learning rate schedule, {ξt > 0} is the
random perturbations to the learning rate. We want to solve for ∇f(θ) = 0 with the iterative scheme
θt+1 = θt + η̃t h(θt;ωt), where {ωt} are iid draws and η̃t = ηtξt is the randomized learning rate.
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Assumption S11. (Standard regularity conditions for SGD, Assumption D.1 [27]).
A1. h(θ) , Eω[h(θ;ω)] is Lipschitz continuous;

A2. The ODE θ̇ = h(θ) has a unique equilibrium point θ∗, which is globally asymptotically
stable;

A3. The sequence {θt} is bounded with probability one;

A4. The noise sequence {ωt} is a martingale difference sequence;

A5. For some finite constants A and B and some norm ‖ · ‖ on Rd, E[‖ωt‖2] ≤ A + B‖θt‖2
almost surely ∀t ≥ 1.

Proposition S12 (Generalized SGD, Proposition 2.2 in [27]). Under the standard regularity con-
ditions listed in Assumption S11, we further assume

∑
t E[η̃t] = ∞ and

∑
t E[η̃2t ] < ∞. Then

θn → θ∗ with probability one from any initial point θ0.

Assumption S13. (Weak regularity conditions for generalized SGD, Assumption G.1 in [27]).

B1. The objective function f(θ) is second-order differentiable;

B2. The objective function f(θ) has a Lipschitz-continuous gradient, i.e., there exists a constant
L satisfying −LI � ∇2f(θ) � LI , where for semi-positive definite matrices A and B,
A � B means vTAv ≤ vTBv for any v ∈ Rd;

B3. The noise has a bounded variance, i.e., there exists a constant σ > 0 satisfying
E
[
‖h(θt;ωt)−∇f(θt)‖2

]
≤ σ2.

Proposition S14 (Weak convergence, Proposition G.2 in [27]). Under the technical conditions listed
in Assumption S13, the SGD solution {θt}t>0 updated with generalized Robbins-Monro sequence
(η̃t:

∑
t E[η̃t] =∞ and

∑
t E[η̃2t ] < ∞) converges to a stationary point of f(θ) with probability 1

(equivalently, E
[
‖∇f(θt)‖2

]
→ 0 as t→∞).

Proposition S15 (Convergence of FlatNCE, simple version). Under the technical conditions
in Assumption A1, with Algorithm S1 θt converges in probability to a stationary point of the
unnormalized mutual information estimator I(θ) , Ep(x,y)[gθ(x, y)] − Ep(x)[logZθ(x)] (i.e.,
limt→∞ ‖∇I(gθt)‖ = 0), where Zθ(x) , Ep(y)[egθ(x,y)]. Further assume I(θ) is convex with
respect to θ, then θt converges in probability to the global optimum θ∗ of I(θ).

Proof. For fixed gθ(x, y) the corresponding optimal u∗θ(x, y) maximizing the rhs in Equation (9) is
given by

u∗θ(x, y) = logEp(y′)[exp(gθ(x, y′)− gθ(x, y))] , − log Eθ(x, y), (34)

so Êθ(x, y) , exp−ûφ(x,y) can be considered as approximations to Eθ(x, y).

∇θ{(9)} = −Ep(x,y)
[
e−uφ(x,y)Ep(y′)[∇θ exp(gθ(x, y′)− gθ(x, y))]

]
(35)

= Ep(x,y)

[
Êθ(x, y)
Eθ(x, y)

∇θ log Eθ(x, y)

]
(36)

Note IBA , maxgθ{Ep(x,y)[log Eθ(x, y)]} is the well-known Barber-Agakov (BA) representation of
mutual information (i.e., IBA = I(X;Y )) [53, 6], so optimizing Equation (9)8 with SGD is equivalent
to optimize IBA with its gradient scaled (randomly) by Êθt/Eθt [24].

Under the additional assumption that Êθt/Eθt is bounded between [a, b] (0 < a < b <∞), results
follow by a direct application of Proposition S12 and Proposition S14.

8Based on the proof of Corollary 3.4, we know FlatNCE optimization is a special case of optimizing Equation
(9).
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F Algorithm for FlatNCE

We summarize the FlatNCE algorithm in Algorithm S1.

Algorithm S1 FlatNCE
Empirical data distribution p̂d = {(xi, yi)}ni=1

for t = 1, 2, · · · do
Sample i, i′k ∼ [1, · · · , n], k ∈ [1, · · · ,K]
g⊕ = gθ(xi, yi), g	 = gθ(xi, yi′k)

# logits = [g⊕, g	], labels = 0
# `InfoNCE = CrossEntropy(logits, labels)
clogits = logsumexp(g	 − g⊕)
`FlatNCE = exp(clogits− detach[clogits])
# Use your favorite optimizer

end for

G Algorithm for ESS Scheduling

We summarize the effective-sample size (ESS) scheduling scheme in Algorithm S2.

Algorithm S2 ESS Scheduling
Empirical data distribution p̂d = {(xi, yi)}ni=1

Inverse temperature β = 1, ESS-scheduler {%t ∈ (1/K, 1]}Tt=1

Adaptation rate γ = 0.01

for t = 1, 2, · · · , T do
Sample i, i′k ∼ [1, · · · , n], k′ ∈ [1, · · · ,K]
g⊕ = gθ(xi, yi), g	 = gθ(xi, yi′k)

clogits = logsumexp(g	 − g⊕)
weights = Softmax(g	 − g⊕)
ESS = 1./(K · square(weights).sum())
`FlatNCE = exp(clogits− detach[clogits])
# Use your favorite optimizer
if ESS > %t then
β = (1− γ) · β

else
β = (1 + γ) · β

end if
end for

H Failed Attempts to Overcome the log-K Curse

The author(s) feel it is imperative to share not only successful stories, but more importantly, those
failure experience when exploring new ideas. We contribute this section in the hope it will both help
investigators avoid potential pitfalls and inspire new researches.

Joint optimization of primal-dual critics. Inspired by the concurrent research of [24], the author(s)
of this paper had originally hope the joint optimization of primal-dual critic as defined in Equation
(9) will match, and hopefully surpass the performance of multi-sample InfoNCE with single-sample
estimation (i.e., K = 1). The argument is follows: in theory, the single-sample Fenchel-Legendre
estimator has the same expectation with its multi-sample variant, and is provably tighter than InfoNCE.
In a sense, Fenchel-Legendre estimator is combining the gradient of FlatNCE and InfoNCE, and the
potential synergy is appealing. Unfortunately, in our small scale trial experiments (i.e., MNIST and
Cifar), we observe that while the Fenchel-Legendre estimator works reasonably well, it falls slightly
below the performance of InfoNCE (about 2% loss in top-1 accuracy). We noticed the author(s)
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of [24] have updated their empirical estimation procedure since first release of the draft, which we
haven’t experimented with yet on real data. Also our earlier comparison might not be particular
fair as we are comparing single-sample versus multi-sample estimators. So this direction still holds
promise, which will be investigated in future work.

Alternating the updates of g(x, y) and u(x, y). While our initial attempts with joint optimization
of (g, u) failed, we want to use u as a smoothing filtering. This is reminiscent of the exponential
moving average trick employed by the MINE, but in a more principled way. Additionally, we further
experimented with the idea to optimize on the manifold of u that respects the optimality condition
(i.e., u∗(x, y) = g(x, y) + s(x), see [24] for proofs). Contrary to our expectation, these modification
destabilizes training. Our estimators exploded after a few epochs, in a way very similar to the DV
estimator without sufficient negative samples. The exact reason for this is still under investigation.

I Further Experiments

The above discussion presented several experimental results to highlight unique aspects of
the proposetate-of-the-art solutions. Our code can be assessed from https://github.com/
Author-name/FlatCLR. All experiments are implemented with PyTorch and executed on NVIDIA
V100 GPUs with a maximal level of parallelism at 4 GPUs.

Self-supervised learning (SSL) on Cifar and ImageNet. We set our main theme in SSL and
compare the effectiveness of the SimCLR framework [1] to our FlatNCE-powered FlatCLR. Our
codebase is modified from a public PyTorch implementation9. Specifically, we train 256-dimensional
feature representations by maximizing the self-MI between two random views of data, and report the
test set classification accuracy using a linear classifier trained to convergence. We report performance
based on ResNet-50, and some of the learning dynamics analyses are based on ResNet-18 for
reasons of memory constraints. Hyper-parameters are adapted from the original SimCLR paper. For
the large-batch scaling experiment, we first grid-search the best learning rate for the base batch-size,
then grow the learning rate linearly with batch-size.

The observations made on Cifar align with our theoretical prediction (see Figure 3): in the early
training (less than 50 epochs), where the contrast between positives and negatives have not saturated,
all models performed similarly. After that, performance start to diverge when entering a regime where
FlatNCE learns more efficiently.

We further apply our model to the ImageNet dataset and compare its performance to the SimCLR
baseline. We note the SOTA results reported by [1] heavily rely on intensive automated hyper-
parameter grid search, and considerably larger networks (i.e., ResNet50 ×4 versus ResNet50), that
we are unable to match given our (university-based) computational resources. So instead, we report
fair comparison to the best of our affordability. Table 1 reports SSL classification performance
comparison up to the 100 epoch10. In Table 2 we examine the performance of representation transfer
to other datasets. For both cases, FlatCLR consistently outperforms the vanilla SimCLR.

Mini-batch sample MI. In Figure S1 we show that mini-batch sample MI is inadequate for predicting
downstream performance.

Large-batch training. In Figure S2 we show large-batch training speedup for the ResNet-50
architecture. Note that we have used the linear scaling of learning rate. And interestingly, for the
ResNet-50 architecture model, moderate batch-size (256) actually learned fastest in early training.
This implies potential adaptive batch-size strategies to speedup training.

Transfer Learning via a Linear Classifier We trained a logistic regression classifier without l2
regularization on features extracted from the frozen pretrained network. We used Adam to optimize
the softmax cross-entropy objective and we did not apply data augmentation. As preprocessing, all
images were resized to 224 pixels along the shorter side using bicubic resampling, after which we
took a 224× 224 center crop.

9https://github.com/sthalles/SimCLR
10The reported results is a lower bound to actual performance. We were able to considerably improve the final

result via running longer linear evaluation training with larger batch-sizes.
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Figure S1: While ground-truth representation MI strongly correlates with performance (left), this
relation is not evident with the mini-batch sample MI (right).
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Figure S2: Speed up of large-batch training with ResNet-50 on Cifar. Larger batch leads to faster
convergence.

Table S3: ImageNet SSL semi-supervised learning results.

Label fraction 1% 10%
Top1 Top5 Top1 Top5

Supervised 5.25 14.40 41.98 67.05
SimCLR 33.44 61.29 54.62 79.89
FlatCLR 36.35 64.59 56.51 81.32

Transfer Learning via Fine-Tuning We finetuned the entire network using the weights of the
pretrained network as initialization. We trained for 100 epochs at a batch size of 512 using Adam
with Nesterov momentum with a momentum parameter of 0.9. At test time, we resized images to
256 pixels along the shorter side and took a 224× 224 center crop. We fixed the learning rate = 5−5

and no weight decay in all datasets. As data augmentation during fine-tuning, we performed only
random crops with resize and flips; in contrast to pretraining, we did not perform color augmentation
or blurring.

Semi-supervised Learning Supervised Baselines We compare against architecturally identical
ResNet models trained on ImageNet with standard cross-entropy loss. These models are trained with
the random crops with resize and flip augmentations and are also trained for 100 epochs.

I.1 Clarifications on the performance gaps to SOTA results

This paper aims for promote a novel contrastive learning objective FlatNCE that overcomes the
limitations of the widely employed InfoNCE. While in all experiment we performed, our FlatNCE
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outperforms InfoNCE under the same settings, we acknowledge that there is still noticeable perfor-
mance gap compared to SOTA results reported in literature. We want to emphasize this paper is
more about bringing theoretical clarification to the problem, rather than beating SOTA solutions,
which requires extensive engineering efforts and significant investment in computation, which we do
not possess. For example, the SimCLR paper [1] have carried out extensive hyperparameter tuning
for each model-dataset combination and select the best hyperparameters on a validation set. The
computation resource assessible to us is dwarfed by such need. Their results on transfer learning and
semi-supervised learning are transfered from a ResNet50 (4×) (or ResNet50) with 4096 batch size
and 1000 epochs training on SimCLR. Our results posted here are transfered from a ResNet50 with
512 batch size and 100 epochs training on SimCLR and FlatCLR. Also, we chose to use the same
hyperparameter and training strategy for each dataset to validate the generalization and present a fair
comparison between SimCLR and FlatCLR.

All in all, the author(s) of this paper is absolutely confident that the proposed FlatCLR can help
advance SOTA results. We invite the community to achieve this goal together.

J Conclusions

We have presented a novel contrastive learning objective called FlatNCE, that is easy to implement,
but delivers strong performance and faster model training. We show that underneath its simple
expression, FlatNCE has a solid mathematical grounding, and consistently outperforms its InfoNCE
counterpart for the experimental setting we considered. In future work, we seek to verify the effective-
ness of FlatNCE on a computation scale not feasible to this study, and apply it to new architectures
and applications. Also, we invite the community to find ways to reconcile the performance gap
between those theoretically optimal MI bounds and those self-normalized sub-optimal bounds such
as FlatNCE and InfoNCE, and develop principled theories for hard-negative training.
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