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Abstract

Training deep networks with noisy labels leads to inaccurate modeling and poor
generalization capability due to overfitting the noise. One technique to overcome
this challenge is to pretrain a feature extractor backbone without labels using
self-supervised learning (SSL) and training only a linear classifier on the noisy
labels. Another technique to pretrain the feature extractor is to perform supervised
learning on an alternate clean in-domain dataset. Here, we assess the robustness of
representations learned using various SSL methods towards the noise in the label
set and compare it with the noise robustness achieved using supervised training
on an alternate dataset. We present a small-scale and yet detailed study of five
SSL methods on CIFAR-10 dataset for symmetric and asymmetric noise. We find
that SimCLR and MoCo respectively achieve the most and the least robustness;
however, they both outperform the supervised learning in terms of noise resiliency.

1 Introduction

Recent success of deep learning can largely be attributed to advances in supervised learning on
large-scale labelled datasets. However, collecting high quality labels is an expensive endeavour;
especially, when expert knowledge is required for annotation. On the other hand, there exist many
alternatives such as crowdsourcing which facilitates affordable annotation, but with certain amount of
noise in the labelling processes. Label-noise is inevitable either due to accidental mistakes or caused
by the inherently incomprehensible ambiguities in the data.

Supervised training with label-noise leads to inaccurate representation learning as the model overfits
to such noise [[1]]. There are many approaches to circumvent this issue. For example, recent methods
propose verifying labels on few images and estimating label confusion [2], loss correction technique
[3]], reweighting examples [4]], true label estimation [5]], noise adaptation layer [6]], curriculum learning
[7]], etc. In this paper we focus on learning a feature extractor, or backbone, without using the noisy
labels and then training a linear classifier for the pretrained and frozen backbone using the noisy
labels. As only the last linear layer is trained with the noisy labels, this technique reduces overfitting.

Specifically, we analyze two approaches where the backbone is trained using (i) contrastive learning
with unlabeled data and (ii) supervised learning with the alternate clean in-domain dataset. Unlike the
first approach, the second approach requires a clean label set from the in-domain dataset. Note that
the in-domain dataset is different from the noisy dataset but includes images from the same domain.
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In essence, the second approach is akin to transfer learning. We assess these approaches for two
types of label noise, namely, symmetric and asymmetric. The symmetric noise corrupts the labels
in a purely random manner using a uniform distribution. Meanwhile, asymmetric noise simulates
naturally occurring label noise where two classes with similar features (ex. cats and dogs) may be
confused and thereby mislabeled.

The main contributions of this paper are as follows. (i) We study five contrastive learning methods in
terms of their robustness to label-noise. We assess robustness to two types of noise, i.e. symmetric
and asymmetric, at ten different levels ranging from 0.0 to 0.9 on CIFAR-10 dataset. (ii)) We
characterize the robustness gap across the two highest-performing SSL models based on the learnt
feature representations. (iii) We compare the noise robustness behavior of self-supervised methods
with the ones achieved using supervised transfer learning and find the former to be more robust than
the latter.

2 Experiments and Analysis

First, we pretrain the five self-supervised models, namely, SimCLR [8], MoCo [9], BYOL [10],
SimSiam [11]], and SwaV [12]. Then we train a linear classifier on top of the pretrained models
using noisy labels. We compare the models in terms of their noise-resiliency against symmetric
and asymmetric noise. Next, we compare the most robust model with a supervised model of equal
capacity trained on an equivalent dataset. In the next section, we will elaborate our experimental
setup and the datasets we used for training.

2.1 Dataset Preparation for Noisy Labels.

We perform experiments on CIFAR-10 [13]] and artificially inject two types of label noise. A noise
rate parameter 7 determines the proportion of the training examples that are corrupted. To avoid
class imbalance issues, we corrupt each class with the same noise ratio. We set the noise rate 1 to 10
values between 0.0 and 1.0 with a uniform intervals, n € {0.0,0.1,0.2,...,0.9}. The clean dataset

is shown with » = 0.0. Given a dataset with y € {1,..., K} classes, we define a label transition
matrix T where ¢;; is the probability of having label y = ¢ corrupted by y = j where 7 # j and
1,7 € {1,..., K}. For the case with the symmetric noise, is a purely random noise, where the label y

is corrupted with a uniform probability ¢;; = ﬁ to one of the other K — 1 classes —which excludes
the true class label. The asymmetric noise is a class-dependent noise often caused by confusing a
label for another one from a similar class. In this setting, the probabilities for label transitions among
some classes are higher than others; e.g., class "dog" may be more likely to be mistaken for "cat",
rather than "car". To simulate this type of naturally occurring noise, we corrupt the label for a given
class using the label from its subsequent class,i.e. y =1 — 2 — ... = K — 1. In order to remove
the effect of the randomly generated noisy training set on our models, we use a fixed random seed
when generating our noisy training sets to ensure all models that are being compared against each
other are presented with the same noisy dataset.

2.2 Resiliency to Label Noise

In this experiment, we examine the behaviour of self-supervised methods towards noisy data labels
on a classification downstream task. In particular, we analyze the effect of the different types of label
noise on their performance.

Setup. We train all models using 1ightly[14], a computer vision framework for self-supervised
learning. Specifically, we use cifar10_benchmark. p with the default hyperparameter setting
provided by 1ightly. We train all models with batch size of 512 for 200 epochs on CIFAR-10 train
set. All methods are trained with ResNet-18 backbonel/15].

k-NN accuracy on clean CIFAR-10 test set upon the completion of pretraining is as follows: SimCLR-
83.52%, SwAV-70.57%, MoCo0-84.29%, SimSiam-80.80%, BYOL-71.05%. We consider the last
checkpoint for each method and remove projection/prediction head(s). We use two fully connected
layers for the projection head: MoCo, SimCLR, and SwAV use ReLU nonlinearity on the first
projection layer, while SimSiam, BarlowTwins, and BYOL apply BatchNorm followed by ReLU
activation. Then, we compose the pretrained ResNet-18 with a linear classifier initialized with random

2
https://docs.lightly.ai/_downloads/b99fe89a7fc2b4740cb9f1e34d3229ad/cifar10_benchmark.py


https://docs.lightly.ai/_downloads/b99fe89a7fc2b4740cb9f1e34d3229ad/cifar10_benchmark.py

Noise | Symmetric Noise Asymmetric Noise
(%) | MoCo SimCLR SwAV  SimSiam BYOL | MoCo SimCLR SwAV SimSiam BYOL

00 83.57 81.92 66.71 80.46 67.29 | 83.57 81.92 66.71 80.46 67.29
10 82.15 81.24 65.11 79.53 65.67 | 83.43 81.84 66.52 80.34 66.98
20 80.55 80.37 63.57 78.32 64.56 | 82.95 81.62 66.13 80.07 66.70
30 78.62 79.13 61.36 76.50 62.65 | 81.90 81.15 64.76 79.27 65.67
40 75.82 77.05 60.07 73.90 61.11 | 80.05 80.06 63.36 78.15 64.14
50 73.26 75.24 57.82 72.28 59.15 | 76.77 77.96 61.37 74.82 62.29
60 70.24 71.56 55.25 68.49 57.00 | 73.12 73.91 59.11 72.13 59.20
70 67.28 70.06 54.33 65.12 55.12 | 69.50 70.24 55.40 67.44 56.28
80 62.65 65.71 51.16 62.42 52.89 | 62.87 65.05 51.97 62.26 51.74
90 57.62 60.38 47.41 57.45 47.79 | 56.38 57.40 46.82 55.51 47.09

Table 1: Linear Classification test accuracy(%) on noisy CIFAR-10 using Resnet-18 backbone.
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Figure 1: Average test accuracy (%) degradation in pretrained SSL models using (a) symmetric and
(b) asymmetric noise. (c) Average accuracy degradation across SSL models for two noise-types.

weights. We normalize features from ResNet-18 before passing them to the linear classiﬁelﬂ We
train the linear classifier while keeping the weights for ResNet-18 backbone frozen. Training of
a linear classifier is performed using corrupted label set, as described in Section and the final
model is tested on clean test set.

Results. MoCo has the highest top 1% accuracy (84.29%) overall and SimCLR coming in second
highest (83.52%) using a KNN classifier with regards to clean target labels (no target noise). We also
find the same performance trend when we use a linear classifier in Table[T]at 0.0 noise rate.

Figure(l|(c), we notice that in total, symmetric noise has stronger influence on the models’ perfor-
mance than asymmetric noise. Unlike symmetric noise, asymmetric noise is more structured (as
detailed in Section [2.1)) and hence easy to resist.

Figure 1| (a) and (b) show the level of degradation of the test accuracy of the self-supervised pre-
trained models using asymmetric noise and symmetric noise, respectively. We observe that SiImCLR
is less sensitive overall to asymmetric and symmetric noise when compared to the other models. Its
performance, in terms of accuracy, decreased by 1.8% from 0% to 40% asymmetric noise rate and
by 4.8% for symmetric noise. On the other hand, MoCo’s performance dropped by 3.5%, which
is almost twice the drop of SimCLR, from 0% to 40% asymmetric noise rate and 8% symmetric
noise (worst performance overall methods). Other methods, i.e., SWAV, SimSiam and BYOL fall
between MoCo and SimCLR. The question that we could ask here is why did MoCo’s performance
drop: from being the best performing model overall on noise-free data to being the worst performing
model? To investigate the root cause of this decline in performance, we provided in Figure 2] (a) and
Figure[2](b) the T-SNE visualization for each of MoCo and and SimCLR, respectively, on the test set
image features color coded according to the true (no noise) class labels. We observe that the classes
visualizations of the embedding distribution for SImCLR tends to generate tighter distributions and
be more tolerant to slight variations in noise levels. MoCo’s classes embedding distribution, on the
other hand, shows a much more uniform distribution. In this scenario, a slight variation in noise
levels can cause the class labels to intertwine causing a substantial decrease in performance.

We speculate that MoCo generates relatively sparse clusters, compared to SimCLR, since its tempera-
ture in the InfoNCE loss is set lower. MoCo is trained with a temperature of 0.1 and SimCLR with 0.5.
Based on this hypothesis, we conceive and perform an ablation on the temperature hyperparameter
for MoCo. See results in Figure [3] We observe that increasing the value of the temperature parameter
up to a certain value increases the robustness. MoCo achieves the highest noise resiliency at a
temperature of 0.5, similar to SimCLR.

3 . . .
We follow “Tutorial 2: Train MoCo on CIFAR-10" (https://docs.lightly.ai/tutorials/package/tutorial_moco_memory_bank.html)for training
a linear classifier on top of pretrained backbone.
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Figure 4: Test accuracy (%) of
supervised pretraining compared
against self-supervised pretraining

90 | 3285 5044 5373 | 4328 5095 5244

Table 2: Accuracy (%) of transfer learning (TL) and
SSL methods on clean CIFAR-10 test set.

2.3 Transfer learning

In this section, we compare robustness of MoCo and SimCLR method against transfer learning using
supervised pretraining.

Setup. We pretrain a backbone with a linear classifier on in-domain clean dataset using supervised
learning. Next, we finetune the final linear classifier on noisy dataset. To control the unknown domain
shift and to make the comparison between the SSL methods and the transfer learning method fair, we
create the in-domain dataset as follows: we split the CIFAR-10 training set and split it randomly into
two equal subsets, as described in Section@ ‘We use the first subset as an in-domain dataset. We
inject label noise in the second subset and refer to it as noisy dataset.

We pretrain a ResNet-18 backbone on clean in-domain subset using SGD optimizer with 0.01 learning
rate and 0.0001 weight decay for 100 epoch while using minibatches of size 128. Once trained, we
freeze the backbone network and continue training the final linear classifier on noisy subset using
SGD optimizer with 30.0 learning rate and 0.0001 weight decay for 100 epoch while using minibatch
size of size 128. Similarly, we train MoCo and SimCLR following the same setup as discussed in
Section[2.2] We initially train the models using only 50% of the training data—that is clean and in the
case with self-supervised pretraining it is unlabeled. We use the remaining unseen 50% of the data
for finetuning—the noise is added only to this second half of the data.

Results. Table 2 provides a summary of our results and Figure 4 depicts the performance degradation
trend across the three models. The model with the supervised pretraining achieves the highest test
accuracy; but it suffers a dramatic performance drop when finetuned on noisy data.

3 Discussion and Conclusion

In this paper, we studied five SSL methods in terms of their capability in learning representations
that are robust to label noise. Overall, we find that the learnt representations are more robust to
the asymmetric noise than the symmetric noise. Among the SSL methods, representations learnt
using SimCLR and MoCo achieve the most and the least robustness. Furthermore, we find that
the temperature in the InfoNCE loss plays an important role. We also compared SimCLR and
MoCo against supervised pretraining on clean dataset. Although a model with supervised pretraining
outperforms its self-supervised counterparts with a high margin at noise-free setup, it lacks robustness
and suffers a dramatic performance drop when finetuned on noisy data. Our study establishes that
one should prefer SSL pretraining over supervised pretraining in noisy data regimes and tune the
temperature parameter of InfoNCE loss to achieve high noise resiliency.
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