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Abstract

Contrastive learning has made considerable progress in computer vision, outper-
forming supervised pretraining on a range of downstream datasets. However, is
contrastive learning the better choice in all situations? We show it is not. First,
under sufficiently small pretraining budgets, supervised pretraining on ImageNet
consistently outperforms a comparable contrastive model on eight diverse image
classification datasets. This suggests that the common practice of comparing pre-
training approaches at hundreds or thousands of epochs may not produce actionable
insights for those with more limited compute budgets. Second, even with larger
pretraining budgets we identify tasks where supervised learning prevails, perhaps
because the object-centric bias of supervised pretraining makes the model more
resilient to common corruptions and spurious foreground-background correlations.
These results underscore the need to characterize tradeoffs of different pretraining
objectives across a wider range of contexts and training regimes.

Figure 1: Downstream accuracy of contrastive and supervised models for different pretraining
budgets. Models pretrained on ImageNet, then evaluated on 8 diverse image classification datasets.
Shaded regions show the standard deviation across three runs (often too small to see without magnifi-
cation; shown for all except ImageNet which had only one trial). Unpretrained models shown on far
left of each plot.

1 Introduction

The cost of labeling large-scale datasets has motivated a rise in self-supervised pretraining, with
recent methods in computer vision closing the gap with or even surpassing supervised approaches
[1, 9, 11, 2, 32]. Instead of using labels, recent contrastive learning methods leverage an instance
discrimination task [29, 6, 22, 2, 24] to achieve state-of-the-art results on a variety of computer
vision tasks. The instance discrimination task treats each image as its own class, training a model
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to determine whether two augmented examples were derived from the same original instance using
a contrastive loss [10, 12, 27]. This training procedure produces models whose representations are
broadly useful for a range of transfer tasks [7, 31].

These advances underscore the need for studying the real-world tradeoffs between contrastive and
supervised pretraining. We investigate by comparing the transfer performance of both methods across
different pretraining budgets and transfer datasets. Our results address two questions:

1. Is contrastive learning better than supervised across all compute budgets? No, differ-
ent pretraining algorithms produce better representations at different pretraining budgets.
Moreover, transfer accuracy on different tasks is not even monotonic across pretraining.
Thus, we recommend that future work on pretraining report transfer accuracy across epochs
so practitioners can make informed decisions based on their end task and compute budget.

2. For larger compute budgets, is contrastive pretraining better for all tasks? No. While
the supervised model eventually achieves worse downstream accuracy than the contrastive
model on most tasks, we identify tasks where the object-centric bias of ImageNet pretraining
aids transfer—especially in the Waterbirds dataset, which measures reliance on spurious
correlations and ImageNet-C, which measures robustness to common corruptions.

2 Related Work

Performance of self-supervised learning Previous studies on representation learning for visual
tasks have provided insights into the generalizability and transfer performance of various algorithms,
including the comparison of supervised and unsupervised learning methods [4, 18, 17, 8, 16, 33, 7, 31].
In particular, Ericsson et al. [7] find that the best self-supervised models outperform a supervised
baseline on most datasets in their benchmark. Our work builds on this analysis by holding variables
like pretraining epochs and data augmentations constant, performing a controlled analysis of these
models’ learning dynamics and transferability.

Sample efficiency of pretraining methods Several studies [33, 8, 16, 31] analyze sample effi-
ciency or computational efficiency during transfer or finetuning, including Zhao et al. [34], which
compares the pretraining dynamics of supervised and unsupervised learning methods on the VOC’07
detection task. However, to the best of our knowledge, there has not been a comprehensive compari-
son of the learning dynamics over the course of pretraining time for both supervised and contrastive
learning across a diverse range of downstream image classification tasks.

How pretraining objectives shape model representations Zhao et al. [34] visualize the repre-
sentations of contrastive and supervised models, arguing that the former objective may produce
more holistic representations compared to the latter. Furthermore, Ericsson et al. [7] observe that
self-supervised pretraining attends to larger regions than supervised pretraining, a characteristic that
may aid the transfer performance of self-supervised methods. Cole et al. [4] and Horn et al. [14] show
that self-supervised pretraining does not outperform supervised learning for fine-grained classification
tasks. Our study builds upon these works by providing examples of specific object-centric tasks where
the supervised model achieves higher accuracy, as well as cases where the holistic representations of
the contrastive model prevail.

3 Experiments

3.1 Experimental Settings

We pretrain two ResNet-18 models on ILSVRC-2012 (ImageNet) [25] for 200 epochs with a batch
size of 128. We use the standard cross entropy loss for the supervised model, and we use the InfoNCE
objective from Wu et al. [29] for the contrastive model, leveraging a memory bank for negatives.
Both models are pretrained with identical image augmentations, the same as Chen et al. [2] without
random Gaussian blur, and identical model architecture. For pretraining, we use SGD with a learning
rate of 0.03, momentum of 0.9, and weight decay of 1e-4.

For transfer, we use the linear evaluation protocol [2], training a logistic regression model on the
outputs of the prepool 512x7x7 layer of a frozen pretrained model. We evaluate both pretrained
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models by training them for 100 epochs on eight transfer tasks: MNIST [19], FashionMNIST [30],
VGG Flower (VGGFlower) [23], Traffic Signs (TrafficSign) [15], Describable Textures (DTD) [3],
CUB-200-2011 (CUBirds) [28], Aircraft [21], and ImageNet itself. (See Table 1 in the Appendix.)
We use SGD with a batch size of 256, learning rate of 0.01, momentum of 0.9, and weight decay of
1e-4.

3.2 Results

We first compare final transfer accuracies achieved by contrastive and supervised pretraining (Figure
4a). In line with previous studies [7, 2], we find that the contrastive model outperforms the supervised
model on all transfer tasks except ImageNet, its pretraining dataset.

3.2.1 Learning Dynamics Across Compute Budgets

We also investigate the representation learning dynamics and computational efficiency of the two
models. Transfer accuracy by pretraining budget is shown in Figure 1. All results except ImageNet
represent the average of three trials with different random seeds; ImageNet results represent one trial.
We observe the following trends across the seven non-ImageNet tasks:

(i) With only a few epochs of pretraining, the supervised model maintains a lead over the contrastive
model. However, by 15 epochs the contrastive model rapidly overtakes the supervised model’s
downstream accuracy, maintaining a lead until the end of pretraining. Thus, the contrastive model
is more computationally efficient for all but the most restricted compute budgets. However, it also
suggests a note of caution: models that prevail after a certain number of pretraining steps may not
always win out at other, more modest budgets.

(ii) The downstream accuracy of both models does not always increase monotonically across pre-
training. Particularly pronounced for the supervised model, this phenomenon suggests a potential
misalignment between the representations developed for the supervised task and those most useful
for the downstream tasks.

3.2.2 Downstream Effects of Biases Acquired During Pretraining

We have demonstrated that the supervised and contrastive models have different pretraining dynamics,
suggesting that the models may acquire different feature processing capabilities during pretraining.
But what are the downstream effects of these representational differences? Zhao et al. [34] conclude
that supervised pretraining may learn more object-specific features than contrastive models. In three
controlled studies (see Figure 3 in the Appendix for example images from the datasets used), we
investigate this hypothesis by examining specific tasks where an object-centric bias may be salient.
All results are averages of three trials with different random seeds.

NORB We study the transfer performance of both models on a carefully-controlled dataset which
isolates the models’ abilities to capture both object and non-object information in their representations.
Specifically, we use NORB (small set1) — synthetic images of 50 types of toys, annotated with toy
category, lighting conditions, elevations, and azimuths [20]. Contrastive pretraining outperforms
supervised learning on object, elevation, lighting, and azimuth classification tasks. For the non-object
elevation and lighting transformations, the gap in accuracy between the models was pronounced
— 16.18% and 23.91%, respectively — possibly due to the supervised model developing more
object-centric representations. However, drawing firm conclusions is challenging, as the accuracy
difference across tasks may be misleading when object classification accuracy approaches the 100%
ceiling. Furthermore, even if the gap differs, the contrastive model still outperforms the supervised
model across tasks. Thus, these results provide relatively modest evidence of transfer tasks where
object-centricity impacts the two models differently.

Waterbirds We then expand our experiments to a different set of non-object properties — the
content of image backgrounds. We evaluate contrastive and supervised pretraining on Waterbirds,
a dataset designed to examine spurious correlations based on the relationship between object and
background (see Appendix) [26]. We find that on images in which the backgrounds and objects are

1https://cs.nyu.edu/~ylclab/data/norb-v1.0-small/
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(a) Transfer accuracy on NORB object, elevation,
lighting, and azimuth classification. Contrastive ac-
curacy was higher than supervised accuracy on all
tasks. Models pretrained on ImageNet for 200 epochs;
average of three trials, with error bars for standard
deviations.

(b) On the Waterbirds dataset, the supervised
model appears to attend less to spurious correla-
tions. LW indicates images of Land birds on Water
backgrounds. Models pretrained on ImageNet for 200
epochs; average of three trials, with error bars for
standard deviations.

Figure 2: Difference in learned representations: NORB and Waterbirds.

mismatched the supervised model achieves higher transfer accuracy than the contrastive model, in
contrast to the previous results showing higher image classification performance for the contrastive
model. This suggests that the supervised model may have learned more object- or foreground-centric
representations, which render the spurious background feature less prominent. While this result
lends support to the notion that the contrastive model learns a more holistic image representation, it
also suggests that the inductive bias attained from a more tailored representation may be helpful in
underspecified settings where undesired features are also predictive of the class of interest [5].

ImageNet-C Last, we study the degradation of transfer performance in the presence of non-
object-based corruptions. We hypothesized that if supervised learning results in more object-centric
representations, then transfer performance might degrade less with non-object corruptions such as
color shifts and changes in contrast. We evaluate both models, after transfer was performed for
ImageNet, on 15 corruptions from ImageNet-C, a dataset created by applying 15 corruptions at 5
severity levels to ImageNet validation images [13]. We observe the relative mCE, which measures
the performance degradation from clean to corrupted data (lower is better), to be lower for supervised
(91.08±0.279%) vs the contrastive model (95.41±0.157%). This provides additional evidence that
supervised pretraining may lead to more object-centric representations than contrastive approaches.

4 Discussion

We investigate tradeoffs between supervised and contrastive pretraining.

Our first set of experiments examines how the linear evaluation performance on a range of transfer
tasks changes as each model pretrains. Surprisingly, we find that transfer performance does not mono-
tonically increase across pretraining, suggesting a misalignment between representations learned
for pretraining vs transfer. Moreover, while the contrastive model eventually achieves higher perfor-
mance, for the first 10-15 epochs the supervised model yields better representations for downstream
tasks. This not only reveals differences in the process by which both models acquire their useful
representations, but also that conclusions drawn for models trained for thousands of epochs may
not always transfer over to practitioners with more modest compute budgets. Thus, we encourage
developers of new pretraining techniques to release learning dynamics curves so that practitioners
can make decisions based on their own budgets and use cases.

To further explore tradeoffs between the two models, we examine whether supervised learning imparts
an object-centric bias detectable through improved performance on transfer tasks. We find strong
effects in the case of Waterbirds and ImageNet-C, but weaker effects for the NORB dataset. We
encourage future work investigating how pretraining objectives shape the behavior of models in
ambiguous scenarios, as well as more broadly investigating whether these conclusions hold across a
wider range of architectures, hyperparameters, datasets, and training objectives.
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Table 1: Details of datasets used.

DATASET FOCUS CLASSES TRAIN SIZE

VGG FLOWER FLOWERS 102 6507
TRAFFIC SIGN ROAD SIGNS 43 31367
MNIST DIGITS 10 60000
FASHION MNIST APPAREL 10 60000
DTD TEXTURES 47 3760
CU BIRDS BIRDS 200 5994
AIRCRAFT AIRCRAFTS 100 3334
IMAGENET DIVERSE 1000 1281167
NORB-OBJECT TOYS 6 48600
NORB-ELEVATION ELEVATIONS 9 48600
NORB-LIGHTING LIGHTING 6 48600
NORB-AZIMUTH ROTATIONS 18 48600
WATERBIRDS BIRDS 2 4795

A Appendix

A.1 Details of Datasets Used

In Table 1, we show the details of the 10 datasets used in this study, including the focus, number of
classes, and the size of the training set.

Example images from the datasets used in Section 3.2.2 are shown in Figure 3. Each represents a
different way of examining the object-centricity of a model’s representations.

(a) NORB. Figure adapted from LeCun et al. [20].

(b) Waterbirds. In Waterbirds, the training exam-
ples are constructed such that waterbirds are typically
shown on water backgrounds, while landbirds are typi-
cally shown on land backgrounds. Testing, however, is
conducted on a split of the data where the foreground
is independent of the background. Figure adapted
from Sagawa et al. [26].

(c) ImageNet-C. Figure adapted from Hendrycks and
Dietterich [13].

Figure 3: Example images from datasets used in Section 3.2.2.

A.2 Transfer Accuracies on Diverse Tasks

In Table 2, we compare the transfer accuracies on 8 diverse tasks after 200 epochs of pretraining. We
visualize this comparison in Figure 4a, and we explore the difference in transfer accuracy between
the supervised and contrastive models over the course of pretraining in Figure 4b.

7



Table 2: Comparison of transfer accuracies on diverse tasks. After 200 epochs, the contrastive
model achieves higher transfer accuracy for all tasks except ImageNet, which was used to pretrain
the supervised model. Values after ± are standard deviations.

TASK SUPERVISED CONTRASTIVE

AIRCRAFT 29.1 ± 0.3 50.0 ± 0.3
CUBIRDS 20.7 ± 0.3 29.7 ± 0.2
FASHIONMNIST 84.6 ± 0.1 89.9 ± 0.1
DTD 47.4 ± 0.3 60.8 ± 0.2
TRAFFICSIGN 81.8 ± 0.2 96.6 ± 0.1
MNIST 92.8 ± 0.1 96.7 ± 0.1
VGGFLOWER 63.6 ± 0.2 89.4 ± 0.1
IMAGENET 47.8 ± 0.0 44.4 ± 0.0

(a) Comparison of transfer accuracies achieved by
supervised and contrastive pretraining across 8 di-
verse image classification transfer tasks. Both mod-
els were pretrained on ImageNet for 200 epochs. Con-
trastive accuracy was higher than supervised accuracy
on all tasks except ImageNet. Results on all tasks
represent the average of three independent runs, with
error bars representing the standard deviation.

(b) Difference in transfer accuracy (supervised mi-
nus contrastive) on eight image classification tasks.
The dashed red line indicates when contrastive and
supervised accuracies match, and we see that every
task except ImageNet crosses the dashed line from
positive to negative—indicating that contrastive ac-
curacy overtakes supervised accuracy—at or before
epoch 15 of pretraining.

Figure 4: Transfer accuracies on diverse tasks.
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