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Abstract

We propose prototypical self-supervised representation distillation, where it trans-
fers the representational knowledge of a self-supervised network to another one
by distilling the prototypical probability distribution. To that end, we present
prototypical contrastive predictive coding that combines prototypical methods and
contrastive learning by modeling the critic as the probabilistic discrepancy between
probabilistic outputs of teacher and student. We demonstrate that the proposed
approach dramatically improves the performance of representation learning on
small networks and outperforms pre-existing self-supervised model compression
baseline.

1 Introduction

Self-supervised learning (SSL) has drawn massive attention due to its aptitude to learn useful features
that have outstanding performance on downstream tasks without manual annotation. However, most
self-supervised methods involve large networks (such as ResNet-50) and do not work well on small
networks. Therefore, [1] proposed self-supervised representation distillation (SEED) that transfers the
representational knowledge of a big self-supervised network to a smaller one to aid the representation
learning on a small networks.

The contrastive objectives such as CPC [2] or as known as InfoNCE are proven to be effective in
learning representations [3, 4, 5]. Especially, CPC is proven to be a lower bound to the mutual
information, allowing networks to capture the correlation of representations without a label. However,
it requires large negative samples to achieve adequate performance. On the other hand, the prototypical
method has shown empirical success in SSL without pertaining memory buffer [6, 7, 8]. They involve
prototypes to generate probabilistic outputs and minimize cross-entropy loss between the prototypical
distributions, which is adapted from the knowledge distillation (KD) [9].

In this paper, we improve SEED by using prototypical methods. Our contributions are two-fold:
First, we propose prototypical contrastive predictive coding (ProtoCPC), where we combine con-
trastive learning and prototypical method by modeling the critic as the probabilistic discrepancy of
two prototypical distributions. Then we present prototypical self-supervised representation distil-
lation (ProtoSEED), where we use prototypes to transfer the representational knowledge of a large
self-supervised model to a smaller one. Our method applies to any self-supervised teacher model
and is simple in its implementation. Through experiments on ImageNet, we show that our approach
drastically improves the representation learning of ResNet-18. Moreover, we show that our method
outperforms SEED even with a shorter epoch of training.
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2 Method

2.1 Prototypical Contrastive Predictive Coding

Let x ∼ X be a data with random variable X . Given a teacher network fT and a student network
fS , which maps x into RDT and RDS respectively. Let T = fT (X) and S = fS(X) be random
variables for each teacher and student representations. The contrastive predictive coding (CPC) [2] is
a variational lower bound to the mutual information I(T ;S) where it is defined by KL-divergence be-
tween the joint distribution p(T, S) and the product of the marginal distributiosn p(T )p(S). Formally,
given a student feature zs ∼ S with a positive zt ≡ zt0 and N − 1 negatives {ztj}N−1j=1 sampled from
T , i.e. (zt, zs) ∼ p(T, S) and {(ztj , zs)}N−1j=1 ∼ p(T )p(S), the following inequality holds for any
critic h : RDT × RDS → R+:

I(T ;S) ≥ E
[

log
h(zt, zs)

1
N

∑N−1
j=0 h(ztj , zs)

]
(1)

Usually the critic h is set by the exponential of inner product of two unit feature vectors. On the other
hand, we model the critic by the discrepancy of two probability distributions. We use cross-entropy to
measure the discrepancy, but since cross-entropy requires two distributions to be on same probability
space, we append additional prototypes to match the dimension. Let WT ∈ RDT×K ,WS ∈ RDS×K

be a linear prototypical layer which maps each teacher and student features to dimension of K. For
probability ps of a student representation, we use softmax operator on z̃s with temperature τs > 0:

p(k)s =
exp

(
z̃
(k)
s /τs

)∑K
k′=1 exp

(
z̃
(k′)
s /τs

) . (2)

Similarly we set probability ptj of teacher representations with temperature τt > 0. Then we set the
critic by h(z̃t, z̃s) = e−H(pt,ps) = e

∑K
k=1 p

(k)
t log p(k)

s . Remark that the critic is bounded and achieves
maximum when pt is equal to ps. Then by substitution into Eq. 1, it follows that

I(T ;S) ≥ E
[

log
e−H(pt,ps)

1
N

∑N−1
j=0 e−H(ptj ,ps)

]
= E

[
log

exp(pt · z̃s/τs)
1
N

∑N−1
j=0 exp

(
ptj · z̃s/τs

)]
≥ E

[
log

exp(pt · z̃s/τs)
1
N

∑N−1
j=0

∑K
k=1 p

(k)
tj exp

(
z̃
(k)
s /τs

)] = E
[

log
exp(pt · z̃s/τs)∑K

k=1 q
(k) exp

(
z̃
(k)
s /τs

)], (3)

where q(k) = 1
N

∑N−1
j=0 ptj is a mean of teachers’ probability which we refer to prior. The first

inequality is by data processing inequality. The second equality is by crossing out the constant term
C, and third inequality is from Jensen’s inequality. We define Prototypical Contrastive Predictive
Coding (ProtoCPC) objective by last term in Eq. 3. In addition, we define ProtoCPC loss LProtoCPC
by the negative of ProtoCPC objective, thus minimizing ProtoCPC loss is equivalent to a variational
maximization of mutual information between student and teacher representations.

Prior momentum Since ProtoCPC is contrastive, it requires sufficient negatives to perform learning.
However, unlike CPC, ProtoCPC only requires prior q that accounts for the negatives. Therefore, we
use exponential moving average (EMA) on prior q for better estimation as following:

q(k) ← mpq
(k) + (1−mp)

1

N

N∑
j=1

p
(k)
tj , (4)

where mp > 0 is a momentum rate.

Assignment of teacher probability While KD used softmax operator for both probabilities of
teacher and student networks, many self-supervised methods [6, 7] reported that the softmax operator
can lead to collapse, i.e. every representation fall into the same one. To compromise, many proto-
typical self-supervised methods resort on Sinkhorn-Knopp iterative algorithm by formulating the
assignment of teacher probability as an optimal transport problem:

argmax
Pt

〈Pt, Zt〉+ τtH(Pt), s.t. Pt ∈ RN×K+ , Pt1K = 1N , P
>
t 1N =

N

K
1K , (5)
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where Zt is a matrix whose rows are ztj , H(Pt) =
∑N−1
j=0

∑K
k=1−p

(k)
t log p

(k)
t is a entropy and

τt > 0 is a temperature that controls the smoothness of distribution. Then the Eq. 5 can be solved
by only few steps of Sinkhorn-Knopp iteration [10, 11] which iteratively projects Pt into following
form:

p
(k)
tj =

βke
z
(k)
tj /τt∑K

k′=1 βk′e
z
(k′)
tj /τt

, (6)

where βk is a normalizing constant. We refer this to Sinkhorn-Knopp (SK) operator.

2.2 Prototypical Self-supervised Representation Distillation

We propose prototypical self-supervised representation distillation (ProtoSEED) which uses
prototypes to generate the probabilistic output of teacher and student representations, and use
ProtoCPC loss for effective distillation. Let the pre-trained teacher network gT be a composition of
base encoder fT and the projection head hT . Then we train student network gS , where it is composed
of smaller encoder fS and projection head hS of the same architecture as hT . Then we append
prototypes WT and WS for each gT and gS to ensure that they have the same output of dimension
K. Given a data x, we train the student network by minimizing the ProtoCPC loss between the
probability of teacher pt(x) and probability of student ps(x). For ps we use softmax operator with
temperature τs > 0 and for pt we use SK operator with temperature τt > 0 over the batch of samples.
Then the objective is given by following:

min
gS ,WS

Ex∼X
[
LProtoCPC(pt(x), ps(x))

]
. (7)

For prototypes of teacher network WT , we copy the parameters of WS to WT at each iteration. This
allows our method to apply to any self-supervised teacher networks. Note that if the teacher network
is trained by prototypical methods such as DINO [8] or SwAV [7], we can re-use the pre-trained
prototypes for WT . Later, we present ablation studies on setting prototypes for WT .

3 Experiment

Setup We experiment distillation of various self-supervised networks to ResNet-18 [12] on Ima-
geNet [13] without class labels. We consider following self-supervised teacher networks: MoCo-
v2 [4] pre-trained ResNet-50, SwAV [7] pre-trained ResNet-50 and DINO [8] pre-trained ResNet-50
and vision transformer [14]. We train for 100 epochs and we additionally conduct experiments on
using multi-crops data augmentation for SwAV and DINO pre-trained ResNet-50 networks. For
evaluation, we follow linear evaluation protocol which conducts supervised learning on the linear
layer appended at the top of the frozen feature and k-nearest neighbor classification (k-NN).

Main results Table 1 show the main results of our self-supervised model compression compared
to self-supervised learning (SSL) of itself. We observe that ProtoCPC outperforms SSL with a
large margin, especially showing superior performance in the k-NN classification. Note that our
method works well for various self-supervised teacher networks and works well across the different
architectures of teacher and student (vision transformer teacher to ResNet student).

MoCo ResNet-50 SwAV ResNet-50 DINO ResNet-50 DINO DeiT-S/16

Linear k-NN Linear k-NN Linear k-NN Linear k-NN

Teacher 71.1 61.9 75.3 65.7 75.3 67.5 77.0 74.3

Supervised 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5
SSL 52.5 36.7 57.5 48.2 58.2 50.3 58.2 50.3
ProtoSEED 61.1(+8.6) 55.6(+18.9) 63.1(+5.6) 57.7(+9.4) 63.9(+5.7) 60.3(+10.0) 65.5(+7.3) 63.2(+12.9)

Table 1: Main result of our ProtoSEED on distillation of various self-supervised teacher models to ResNet-18.
The teacher models are MoCo ResNet-50, SwAV ResNet-50 and DINO ResNet-50 and DeiT small with patch
size 16. The self-supervised denotes the result of self-supervised learning on ResNet-18 with the same method
of teacher network.
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Teacher Method Epochs Linear k-NN

MoCo SEED 200 60.5 49.1
ProtoSEED 100 61.1 55.6

SwAV

SEED 100 61.1 -
SEED 200∗ 62.6 -
ProtoSEED 100 63.1 57.7
ProtoSEED 100∗ 63.9 57.0

DINO ProtoSEED 100 63.9 60.3
ProtoSEED 100∗ 65.3 60.7

Table 2: Comparison of our method with SEED. ∗ de-
notes training with multi-crops. Every teacher networks
are ResNet-50 and student networks are ResNet-18.

Comparison with SEED Table 2 compares
our method with SEED [1], an original method
for self-supervised model compression. We
observe that our method consistently outper-
forms SEED in both k-NN and linear evalua-
tion with the same teacher network applied. Al-
though training for shorter epochs, our method
achieves outperforms SEED. When the teacher
is pre-trained by SwAV, our method outperforms
SEED without using multi-crops data augmen-
tation, and the gap becomes larger when we
use multi-crops as well. When using DINO self-
supervised teacher and multi-crops data augmen-
tation, we achieve the best results in representa-
tion learning of ResNet-18.

Cross-entropy v.s. ProtoCPC and Softmax v.s. Sinkhorn-Knopp In Table 3, we provide abla-
tion on the loss function and assignment method for pt. We compare ProtoCPC and cross-entropy loss,
where cross-entropy is a wide-ranging choice for knowledge distillation. Also, we compare softmax
and Sinkhorn-Knopp operator. We observe that using SK operator achieves better performance than
softmax operator, and ProtoCPC outperforms cross-entropy loss.

Using teacher’s old prototypes In Table 4, we provide ablation on using teacher’s old prototypes.
We observe that when distilled from SwAV ResNet-50 teacher, using old (pre-trained) prototypes
outperform update with student’s prototypes. On the other hand, when distilled from DINO ResNet-50,
copying from student’s prototypes performs better. We suspect that as SwAV used single prototypes
throughout pre-training, the pre-trained prototypes contain representational knowledge. On the other
hand, the pre-trained prototypes of DINO lack such representational knowledge.

Prior momentum Our ProtoCPC objective relies on the prior term for contrastive learning. Then
using momentum for the prior term allows us a more accurate estimation. Table 5 shows the result of
ProtoSEED from DINO teachers with varying prior momentum. We observe that using momentum
(i.e. mp > 0) performs better than not and it shows the inferior performance when the update is too
slow (mp = 0.999).

Loss pt Linear k-NN

CE SM 61.9 58.5
SK 63.1 60.1

ProtoCPC SM 63.7 60.9
SK 63.9 60.3

Table 3: Ablation on loss functions and
pt assignment methods. ’CE’ for cross-
entropy, ’SM’ for softmax operator.

Teacher Method Linear k-NN

SwAV New P 60.8 54.5
Old P 63.1 57.7

DINO New P 63.9 60.3
Old P 60.3 56.6

Table 4: Ablation on using teacher’s old
prototypes. ’Old P’ for using teacher’s
old prototypes and ’New P’ for copying
prototypes.

mp Linear k-NN

0.0 63.1 60.0
0.9 63.9 60.3
0.99 63.8 60.2
0.999 61.5 58.1

Table 5: Ablation on prior
momentum rate mp.

4 Discussion

Our ProtoCPC objective is shown to be effective in self-supervised representation distillation, suggest-
ing possible application to other distillation tasks such as supervised model compression originated by
knowledge distillation [9]. Note that previous contrastive objectives such as InfoNCE are concerned
with critics modeled by inner product of two unit feature vectors, but one can use critics defined on the
probability simplex as ProtoCPC does. The prototypical layer is imperative to match the probability
space when using cross-entropy for measuring the discrepancy. One possible generalization can be
done by using other probabilistic measures, such as Wasserstein distance, which is a metric and does
not require two distributions to be on same probability space. We leave it for the future work.
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A Details on experiments

A.1 Teacher SSL models

The teacher SSL models are following:

• MoCo-v2 [4] uses InfoNCE loss and momentum encoder. Since InfoNCE requires large
negatives, they pertain a large queue which updates by first-in-first-out rule with features of
momentum encoder. We used the MoCo-v2 ResNet-50 [12] trained for 800 epochs.

• SwAV [7] is a prototypical method that generates probability by adopting prototypes. They
generate probability of a given feature by computing similarity with respect to prototypes
and minimize the cross-entropy between probability outputs of two different views of an
image. They used Sinkhorn-Knopp iteration for probability output. Also, they first proposed
multi-crops strategy, which additionally use small crops of an image to expedite the training.
We used the SwAV ResNet-50 trained for 800 epochs with multi-crops applied.

• DINO [8] is a prototypical method which uses momentum encoder. The training progress is
similar to SwAV except that they use momentum encoder on the prototypes and use online
centering before the softmax operator. They showed that their method is effective in training
vision transformer as well as convnet such as ResNet-50. We used the DINO ResNet-50 and
DeiT-S/16 [14] trained for 800 epochs with multi-crops applied.

We archive the checkpoints of teacher models from the author’s original implementation. We also
conducted SSL on ResNet-18 with DINO which is the state-of-the-art method. We train ResNet-18
with same setting as the author did for ResNet-50, except that we used batch size of 512 and trained
for 100 epochs.

A.2 Data augmentation

For data augmentation, the student networks are trained with same data augmentation as their teacher
did. When using multi-crops data augmentation, we follow SwAV [7] for implementation. Note that
in SEED [1], they conduct ablation studies on using the variety of views that student and teacher
takes. They observed that using identical view for both student and teacher networks performed
better than passing different views of an image to teacher and student. We follow this strategy, but for
multi-crops data augmentation, we only compute the probability of teacher by one global view and
this probability is passed to each probability of small local views. This counters the method in SEED.

A.3 Network architectures

We set the projection heads of student network to be same as the teacher network. When teacher is
DINO DeiT, the teacher network do not contain batch normalization, but we add batch normalization
to projection heads when training ResNet-18 student. Remark that the projection heads of MoCo
and SwAV have output dimension of 128, and the projection head of DINO has output of 256. Then
we set the number of prototypes to be K = 65536 throughout the experiments. For SwAV, since we
use pre-trained prototypes, the number of prototypes is 3000. Every features are normalized before
computation with prototypes, and prototypes are normalized during the training.

A.4 Training hyperparameters

For probability of teacher, we use SK operator with 3 steps of iteration and τt = 0.04. For probability
of student, we set τs = 0.1. The prior momentum for ProtoCPC loss is 0.9. We use SGD optimizer
with batch size 512 and weight decay is 1e-4. The learning rate is 0.6 and is decayed by cosine
learning rate schedule to 1e-6.

A.5 Evaluation

For evaluation, we use both linear evaluation protocol and k-nearest neighbor classification. For
linear evaluation protocol, we freeze the trained weight and train a linear classifier at the top of the
frozen feature. We train with SGD optimizer with batch size 256 and use learning rate of 0.3 with
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100 epochs. We use cosine learning rate decay schedule and we don’t use weight decay. For k-NN
classification, we follow weighted k-NN with τ = 0.07 as done in [15].

B Discussion on ProtoCPC

B.1 Pseudocode for ProtoCPC loss

The PyTorch style pseudo-code for our ProtoCPC is demonstrated in Algorithm 1.

Algorithm 1 ProtoCPC loss PyTorch-style pseudocode.

# tps, tpt: student and teacher temperatures
# m: prior momentum rate
prior = torch.ones(1, K) # initialize prior with uniform
def ProtoCPC(zt, zs):

zt = zt.detach()
pt = SK(zt / tpt)
zs = zs / tps

prior = m*prior + (1-m)* K * torch.mean(pt, dim=0) # sum of prior is always K

loss_align = -torch.sum(pt * zs, dim=1)
loss_unif = torch.logsumexp(zs + torch.log(prior), 1)
loss = loss_align + loss_unif
return loss.mean()

B.2 Relationship with InfoNCE

While many lower bounds to the mutual information were proposed, [16] observe that the tightness of
bound does not necessarily imply better representation learning performance. From then, many works
focused on the analyzing the components of contrastive objective itself which are responsible for the
empirical success. [17] argued that the contrastive loss is composed of alignment and uniformity loss,
where alignment loss accounts for the similarity of two positive features and uniformity loss measures
how the features are scattered in the unit hypersphere, and show that both losses are important in
contrastive learning.

We draw analogy on ProtoCPC by dissecting into alignment and uniformity losses. Since the
alignment loss is straightforward, we analyze the uniformity loss. Remark that one can interpret the
uniformity loss LProtoCPC-Unif by the re-substitution entropy estimator of zs via a von-Mises Fisher
kernel density estimation (vMF-KDE) [18]:

LProtoCPC-Unif = Ezs∼S
[

log

K∑
k=1

q(k) exp(z̄(k)s /τs)

]
= Ezs∼S

[
log

K∑
k=1

q(k) exp(wk · zs/τs)
]

(8)

= Ezs∼S [log p̂vMF-KDE(zs)] + logZvMF = −Ĥ(zs) + logZvMF, (9)

where each wk is a k-th column of WS and acts as a mean direction of k-th vMF distribution and q(k)
acts as a prior for each k-th vMF distribution (It supports why qk is called a prior). The p̂vMF-KDE is
thus the mixture ofK vMF distribution with prior q(k) and then the uniformity loss is a re-substitution
entropy Ĥ(zs). The ZvMF is a normalizing constant for vMF distribution. Remark that the uniformity
loss of CPC objective is also a re-substitution entropy with vMF-KDE, but the mean directions are
given by negative samples ztj and the prior is uniform. It shows that the ProtoCPC objective allows
modeling of complex mixture of vMF distribution by exploiting prior term and using prototypes
remove the dependency on negative samples.
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