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Abstract

The objective of user behavior coding is to learn high-level representation over
behavioral sequence which can be fed into downstream tasks, e.g., profiling and
recommendation. However, the existed approaches has low efficiency on extracting
high-quality information from behavioral sequences. In this paper, a contrastive
user behavior coding approach (CUBC) is proposed by maximizing context- and
content-level mutual information between inputs, outputs and side information.
Furthermore, a proposed content-level negative sampling is proved its effectiveness
in estimating low bound of mutual information. The experimental results show
great potentials to be applied in real applications.

1 Introduction

The increased online services facilitate users to access information on Internet, e.g., browsing
webpages, chatting with others and shopping online, leaving tremendous sequential behavior records.
In this way, the demand of learning a generalized representation from user behaviors has emerged in
both industrial and academic circles [9]: multiple downstream learning tasks can be improved by the
well-presented user behaviors, such as profiling and recommendation.

One foundational idea in sequence modeling is to learn compressed representations (following
encoder-decoder way) that nonetheless can be used to reconstruct raw sequence [5]. The compressed
representative codes can be learned in the form of autoencoders and generative models with constraint
on lossless data distribution. However, such objective of representation learning [6] can merely afford
to predict future, missing or contextual information in behavioral sequence, but failed in coding
user characteristics, such as profiling. An alternative way is to introduce supervised information in
sequence modeling, broadly applied in accurate modeling for specific learning tasks. The so-called
end-to-end modeling methods attempt to directly learn the mappings from inputs to labels [7]. But
learned representation of user behaviors can be hardly re-employed in other learning tasks. In this
way, the remarkable implementation costs take additional system risks on business.

Different from sequence modeling in text, speech and images, learning a generalized representation
of user behaviors prefers to capture both context- and content-level information. Context-level
information is sensitive to temporal variation in one sequence, which can be used to predict future or
missing behaviors [8]. Meanwhile, content-level information presents the sequence as whole, which
can be generally applied to deduce stable characteristics relative to users [2]. Inspired by contrastive
learning [1], in this paper, we attempt to learn high-level representation from user behavior records by
mutual information maximization. The learned representation contains both context- and content-level
information in sequences. Thus, the proposed framework consists of two objectives: 1) context-level
mutual information maximization: the compact distributed vectors are learned by maximizing average
mutual information between inputs and outputs, reflecting the temporal variation in a sequence. 2)
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content-level mutual information maximization: side information relative to user characteristics
can be introduced to embed stable features in behavioral representation. Moreover, a content-level
negative sampling is proposed to better approximate lower bound of mutual information when using
Noise-Contrastive Estimation (NCE) [3] in training. The experimental results prove that the learned
representation from our proposed method has better performance than other comparative models in
multiple downstream tasks, including end-to-end approaches. Furthermore, the improvement from
offline/online scenarios shows the great potentials of our proposed method in real applications.

2 Model

Firstly, we introduce some basic notations and definitions in user behavior coding. The original input
{S(i)}Ni=1 is a collection of N sequential user behaviors, where a sequence S = {sk|sk ∈ T }Mk=1
records behaviors generated by one specific user. The symbols s and T denotes behavior token and
its token set respectively, referring to the possible behaviors, e.g., browsing, chatting and shopping.
Generally, the original behavior token sk should be vectorized as input, i.e., sk

vec.→ xk, where the
symbol xk is an Kx-dimensional input vector corresponding to token sk. Then the vectorized
sequence can be presented as x = {xk|xk ∈ RKx}Mk=1. The objective of user behavior coding is to
generate high-quality representations of sequential user behaviors {y(i)|y(i) ∈ RKy}Ni=1, improving
prediction or inference performance on kinds of potential learning tasks. Each y(i) presents a
compressed vector from corresponding behavior sequence S(i) and the dimension is Ky .

Context-level Mutual Information Maximization: The objective of maximizing context-level
mutual information is to learn the optimal mapping function fθ: x→ y with parameters θ, that is,

I(X;Y ) = DKL(PXY ||PX ⊗ PY ),
where X and Y refer to the variables on input and output for one sequence, and mutual information
is equal to Kullback-Leibler divergence between the joint distribution PXY and the product of the
marginal distribution PX ⊗ PY .

According to variational estimation on f -divergence, the mutual information I(X; fθ(X)) can be
estimated by Jensen-Shannon divergence (JSD [4]), that is,

Jθ,ω(X, fθ(X)) = EPX
[−sp(−Tω(x, fθ(x)))]− EPX̃⊗PX

[−sp(−Tω(x̃, fθ(x)))], (1)

where x v PX and x̃ v PX̃ are the sequences sampled from domain X , the score function Tω ∈ R
is parameterized by ω, and the sp(z) = log(1 + exp(z)) is a softplus function. The Equation 1
formalizes the lower bound of context-level mutual information. Moreover, the score function Tω can
be formalized as

Tω(x, fθ(x)) =
1

M

M∑
k=1

Gω(xk, y),

where xk ∈ x, y = fθ(x) and the function Gω with parameters ω is a well-constructed neural
network with concatenated inputs from vectorized token and sequence representation.

Content-level Mutual Information Maximization: Abundant user data offer us an opportunity to
consider what if we introduce side information in contrastive learning so as to improve the quality of
the learned representation from behavioral sequence. For example, information of user interests can
encourage to understand deep interests in behavioral sequence so as to improve the quality of learned
representation.

Similar to the formalization in context-level mutual information maximization, the optimization can
be formalized as

θ = argmax
θ
I(fθ(X);C), (2)

where C is variable on side information. The objective can also be solved by maximizing JSD loss,
where the score function T can be defined as

Tω′(fθ(x), cu) = Gω′(fθ(x), cu), (3)

where cu is a vector of side information corresponding to user u.

Content-level negative samples: A content-level negative sampling is proposed in order to better
approximate lower bound of mutual information when using NCE to estimate JSD loss. Different
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from negative sampling in token and context levels (e.g., CBOW and skip-gram), the faked behavioral
sequences are directly drawn from the training dataset. For further simplifying negative sampling
approach, we propose an efficient sampling strategy by shuffling sequences on mini-batch. The
experimental results show that the new negative sampling strategy is appropriate for learning sequence
representation than other sampling strategy on token and context level.

Model training: We choose transformer with multi-head attention to learn mapping function fθ.
The sequence representation is aggregated by attention mechanism. Finally, the integrated objective
of our proposed model is to maximize the loss function as follows,

L(θ, ω, ω′) = Jθ,ω(X, fθ(X)) + α · Jθ,ω′(fθ(X), C),

where α is hyper-parameter to balance context- and content-level mutual information functionalized
in representation learning. The detail of learning framework is depicted in A.1.

3 Experiments

In this section, we conduct experiments to analyze prediction performance on our proposed learning
framework in real applications, evaluating the effectiveness of our proposed method.

Datasets and Implementation: The evaluation is implemented on offline data from reading tracks
of users on Wechat public subscription. We extract reading activities of users who live in one of the
cities located in Guangzhou province, China, during June 1 to June 30, 2019. For better modeling
the behavioral sequence, we only choose the top 48,150 popular public subscription accounts and
filter out the sequences which contains less than 3 reading activities. The final dataset includes
687,192 users and its corresponding behavioral sequences. For sequence modeling, the token in
sequences refers to account ID read by users. Besides, we use interests of users as side information
in calculating content-level mutual information loss. The interests of users are obtained by users’
reading preference in Wechat.

Comparative Methods: It is assuming that better representation can result in better prediction
performance. To illustrate the performance of our proposed method, three typical downstream tasks
are used for evaluation, including: gender prediction, age prediction and next token prediction,
broadly used as benchmarks in business.

The compared methods include: 1) Generative model: The learned representation is generated by
objective on sequence completion. Generally, yM (the last output) is chosen for sequence representa-
tion; 2) End-to-end model: The model directly learn the mapping from input to downstream tasks.
The architecture is same as our proposed model except loss function; 3) Feature-based model: The
downstream models are directly constructed by side information.

All constructed features are fed into similar downstream models to evaluate the prediction performance
on tasks. For gender and age predictions, two layer fully connected models are implemented.
Meanwhile, a bilinear scoring function score(y, x) = σ(yTWx) is used for next token prediction,
where σ is a sigmoid function and W is a learnable parametric matrix. The highest score achieved by
pair (y, x) refers to the predicted next token.

Table 1: Prediction performance on gender/age/next token prediction.

Model Gender prediction Age prediction Next token prediction
Acc. Precision Recall F1 score Acc. Precision Recall F1 score nDCG@10 MRR

Generative (yM ) 0.6402 0.6236 0.7074 0.6629 0.6591 0.6912 0.5695 0.6245 0.6971 0.6805
End-to-end 0.7435 0.7475 0.7356 0.7415 0.7232 0.7836 0.6131 0.6879 0.9356 0.9067
Feature-based 0.7465 0.7381 0.7644 0.7510 0.6903 0.7072 0.6444 0.6743 0.5917 0.4783
Token-level NS 0.6751 0.6673 0.6987 0.6826 0.7228 0.7613 0.6452 0.6985 0.8680 0.7649
Context-level NS 0.5070 0.5038 0.9449 0.6572 0.5164 0.5074 0.9690 0.6660 0.1032 0.0430
CUBC (context) 0.7300 0.7296 0.7310 0.7303 0.7334 0.7407 0.7143 0.7273 0.9692 0.9454
CUBC (content)* 0.7349 0.7336 0.7379 0.7357 0.7226 0.7458 0.6715 0.7067 – –
CUBC (context+content) 0.7463 0.7348 0.7710 0.7525 0.7378 0.7710 0.6730 0.7187 0.9672 0.9429

* The learned sequence representation is insensitive to position, thus it can hardly be applied into
next token prediction.

Prediction Performance: Table 1 shows the experimental results. The symbols Token-level NS
and Context-level NS present token and context-level negative sampling stategies used in CUBC.
Meanwhile, the symbols CUBC (context), CUBC (content) and CUBC (context+content) refer to
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the models with considering of context, content or context+content-level mutual information. It is
obvious that both token- and context-level negative samples has limit performance in behavioral
sequence learning. In all three tasks, the learned representations from CUBC outperform other
comparative methods, even better than end-to-end model. Interestingly, feature-based model and
CUBC (context+content) both perform better in gender prediction task. It indicates that high quality
side information can optimize the learned representation. However, it is not equal to directly transform
side information to learned representation. The proof is presented in A.4.1.

Offline and Online Evaluation: To evaluate performance in practical application, the learned
sequence representation associated with other extracted features are also fed into offline tagging
model for training and testing. Concatenated with learned representation from CUBC, the prediction
accuracy is increased to 0.9305 (+0.81%), 0.9403 (+0.23%) and 0.9551 (+0.20%) respectively.
Furthermore, we also take A/B test experiments on online game recommendation production. After
concatenating the learned representation from CUBC, the registration rate is lifted by +0.11%,
+0.51%, 0.82% and +1.11% in four games. The experimental results show the great potentials of our
proposed method in real applications.

4 Conclusion

In this paper, we propose an efficient coding method to learn sequence representation from users
behaviors. The proposed CUBC model maximizes context- and content-level mutual information
between inputs, outputs and side information, and utilize a content-level negative sampling strategy,
improving the quality of learned sequence representation.
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