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Abstract

Contrastive learning aims to leverage pairs of positive and negative samples for
representation learning. By investigating the connection between contrastive learn-
ing and neighborhood component analysis (NCA), we provide a novel stochastic
nearest neighbor viewpoint of contrastive learning and subsequently propose a
series of contrastive losses that outperform the existing ones. Under our proposed
framework, we show a principled way to design integrated contrastive losses that
simultaneously achieve good accuracy and robustness on downstream tasks. Long
version is available at: https://arxiv.org/abs/2112.04468.

1 Introduction

The contrastive paradigm [1, 2, 3, 4, 5, 6] constructs an objective for embeddings based
on an assumed semantic similarity, and the ability to distinguish dissimilar instances.

Figure 1: A conceptual illustration of the relation-
ships among NCA, LSimCLR, and our proposals.

When constructing the contrastive loss, con-
trastive learning algorithms [3, 4, 7, 6] typically
build up the positive pairs by considering data
augmentation Daug

x of a data sample x due to
the lack of label information. This heuristic
loss [4] is denoted as LSimCLR. In this paper, we
review LSimCLR through the lens of the nearest
neighbor classification in Neighborhood Com-
ponent Analysis (NCA) [8]. Specifically, we
uncover the relationship between stochastic near-
est neighbors and positive pairs in contrastive
learning, which then motivates a sequence of
augmented contrastive losses that work better
under practical computational constraints. A
conceptual illustration of our proposals is given
in Figure 1. Furthermore, by inspecting the ad-
versarial accuracy of several methods (e.g., Fig-
ure 2’s y-axis), one sees the insufficiency of those methods in addressing robustness. We thus present
am integrated contrastive framework that accounts for both the standard and adversarial accuracy;
this method’s performance remains in the desired upper-right region (circled) as shown in Figure 2.
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Figure 2: The performance of existing methods and our proposal (IntNaCl & IntCl) in terms of their
standard accuracy (x-axis) and adversarial accuracy under FGSM attacks ε = 0.002 (y-axis). The
transfer performance refers to fine-tuning a linear layer for CIFAR10 with representation networks
trained on CIFAR100.

2 Related Work

Getting rid of the memory bank [2, 3, 7] and instead makes use of other samples from the same batch
to form contrastive pairs, SimCLR [4] still works under the noise contrastive estimation [9, 10, 11, 1]
regime. We let g0(x, {x−i }Ni ) denote the negative term 1

N

∑N
i=1 e

f(x)T f(x−i ), where the subscript
i identifies the summation index and the superscript N identifies the summation limits. We omit
the subscript i when the sample index is one dimensional. Moreover, we define K(A,B) =
− log(A/(A+B)). Then LSimCLR can be re-written as

LSimCLR := Ex∼D,x+∼Daug
x ,x−i ∼D

aug
\x

[
K(ef(x)

T f(x+), Ng0(x, {x−i }
N ))
]
. (1)

In [5], authors propose a de-biased constrastive loss to mitigate the sampling bias, which
we denote as LDebiased. Then, [12] further propose to weigh sample pairs through the co-
sine distance in the estimator, and we denote their approach as LDebiased+HardNeg. These
two losses differ from LSimCLR in the estimator, where LDebiased uses g1(x, {ui}n, {vj}m) =

max{ 1
1−τ+ (

1
n

∑n
i=1 e

f(x)T f(ui) − τ+ 1
m

∑m
j=1 e

f(x)T f(vj)), e−1/t} and LDebiased+HardNeg uses

g2(x, {ui}n, {vj}m) = max{ 1
1−τ+ (

∑n
i=1 e

(β+1)f(x)T f(ui)∑n
i=1 e

βf(x)T f(ui)
− τ+ 1

m

∑m
j=1 e

f(x)T f(vj)), e−1/t}. The

n and m represents the numbers of sampled points in Daug
\x and Daug

x for the weighted negative term,
and τ+ is a hyperparameter that encodes class prior.

In parallel to the above line of work, authors of [13] define the concept of adversarial
examples in the regime of representation learning as the positive sample that maximizes
LSimCLR (i.e. Equation (1)) within a pre-specified perturbation magnitude. The resulting
loss function is LAdv = Ex∼D,x+∼Daug

x ,x−i1
∼Daug
\x,x

−
i2
∼Dadv
\x

[
K(ef(x)

T f(x+), Ng0(x, {x−i1}
N )) +

αK(ef(x)
T f(xadv), Ng0(x, {x−i2}

N ))
]
, where the Dadv

\x is defined by ∪x′∈D\{x}x′ ∪ x′,adv.

3 Neighborhood analysis Contrastive loss

Stochastic nearest neighbor framework. NCA is a supervised learning algorithm concerned with
learning a distance metric that maximizes the performance of nearest neighbour classification. As
the set of neighbors for a point can remain unchanged within an area around transformation A, the
leave-one-out classification performance can be a piecewise-constant function of A and therefore
non-differentiable. To overcome this, the optimization problem is generally given using the concept
of stochastic nearest neighbors. In the stochastic nearest neighbor setting, nearest neighbor selection
is regarded as a random event, where the probability point xj is selected as the nearest neighbor for

xi is given as pij = e−‖Axi−Axj‖
2∑

k 6=i e
−‖Axi−Axk‖2

∝ e−‖Axi−Axj‖2 . Let ci denote the label of xi, in the leave-

one-out classification loss, the probability a point is classified correctly is given as pi =
∑
j|cj=ci pij ,
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where {j | cj = ci} defines an index set with which all points xj belong to the same class as point xi.
We use M to denote the cardinality of this set. The probability xi’s label is ci is given as qi, which
is exactly 1. Thus the optimization problem can be written as minA

∑n
i=1 `(qi,

∑
j|cj=ci pij). This

learning objective then naturally maximizes the expected accuracy of a 1-nearest neighbor classifier.
We will focus on the KL divergence loss in this work. For `(·) = KL, the relative entropy from
p to q is DKL(q‖p) =

∑
i−qi log

pi
qi

=
∑
i− log pi, when qi = 1, and the optimization problem

becomes minA
∑n
i=1− log

(∑
j|cj=ci

e−‖Axi−Axj‖
2∑

k 6=i e
−‖Axi−Axk‖2

)
. With the above formulation, we argue

that the contrastive learning loss can be given assuming only positive pairs belong to the same
class and the transformation Ax is instead parametrized by a function f(x)√

2
= h(x)√

2‖h(x)‖ , where h

is a neural network. Specifically, minf
∑n
i=1 − log

(∑M
j=1

e
− 1

2‖f(xi)−f(x+j )‖2∑
k 6=i e

− 1
2‖f(xi)−f(xk)‖2

)
‖f(x)‖=1−−−−−−→

minf Ex∼D
[
K(

M∑
j=1

ef(x)
T f(x+

j ), Ng0(x, {x−i }N ))
]
, which yields LSimCLR with M = 1, x+ ∼ Daug

x .

NCA inspired contrastive loss. Although we have shown the connection between NCA and
contrastive learning, applying the NCA framework exactly is challenging in two senses. On one hand,
it requires us to use all possible negative pairs which is approximately the size of the entire dataset.
Furthermore, to decide the “demographic ” of a point’s neighborhood, M depends on the relative
density of positive to negative pairs one expects to have in the underlying data distribution. To tackle
these, we propose to use a stochastic approximation to the population loss, where N is determined as
a hyperparameter in a fashion similar to the batch size hyperparameter [4]. In order to determine M ,
as the expected relative density is task-dependent, we treat the M/N ratio as a hyperparameter.

Recall that by letting `(·) = KL, qi = 1, M = 1, x+ ∼ Daug
x , a general stochastic nearest neighbor

algorithm yields LSimCLR. If we keep `(·) = KL, qi = 1, M = 1, then in practice, the expectation
over the probability distribution Daug

x is estimated by only one sample. To reduce the variance of such
an estimator, with a slight abuse of notation, we denote the number of trials by M and propose to
simulate M trials of the procedure for every x. This yields the following loss

LVAR(g = g0,M) := Ex∼D,x+
j ∼D

aug
x ,x−ij∼D

aug
\x

[ 1

M

M∑
j=1

K(ef(x)
T f(x+

j ), Ng0(x, {x−ij}
N
i ))
]
.

By shifting our focus to the number of neighbors that are considered belonging to the same class
(M ), we admit the potential bias induced by assuming M = 1 (i.e. the relative density of positive to
negative pairs to be 1/N ). Therefore, we experiment with enlarging the index set {j | cj = ci} to
include more than one element or equivalently M 6= 1. This leads us to the following objective

LBIAS(g = g0,M) := Ex∼D,x+
j ∼D

aug
x ,x−i ∼D

aug
\x

[
K(

M∑
j=1

ef(x)
T f(x+

j ), Ng0(x, {x−i }
N ))
]
.

Finally, we challenge the specification of qi = 1 and consider a synthetic data point x′ = λxi +
(1 − λ)y, y ∼ D that belongs to a synthetic class cλ,i. Assume the probability xi’s label is cλ,i is
qλ,i = λ+ (1− λ)[cy = ci], then qλ,i should matches the probability pλ,i =

∑
j|cj=cλ,i pij , where

{j | cj = cλ,i} is a singleton containing only the index of x′, which yields

LMIXUP(g = g0,M, λ) :=Ex∼D,x+∼Daug
x ,x−i1

,x−i2
,x−j ∼D

aug
\x

[
K(ef(x)

T f(x+), Ng0(x, {x−i1}
N ))

+
λ

M − 1

M−1∑
j=1

K(ef(x)
T f(λx++(1−λ)x−j ), Ng0(x, {x−i2j}

N
i2 ))

+
1− λ
M − 1

M−1∑
j=1

K(Ng0(x, {x−i2j}
N
i2 ), e

f(x)T f(λx++(1−λ)x−j ))
]
.

The construction of x′ assembles the mixup [14] in supervised learning. We therefore denote it by
LMIXUP. As the above losses are designed from orthogonal perspectives, they are complementary to
each other. We refer to the above three losses as Neighborhood analysis Contrastive loss (NaCl).
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Table 1: The CIFAR100 linear evaluation results (%) of NaCl on LSimCLR, LDebiased+HardNeg, and LIntCl
(ours, cf. Equation (3)). The best improvement over the individual baseline is in boldface.

M LSimCLR : 53.69± 0.25 LDebiased+HardNeg : 56.83± 0.20 LIntCl : 56.22± 0.15
LVAR LBIAS LMIXUP LVAR LBIAS LMIXUP LVAR LBIAS LMIXUP

2 56.04±0.17 55.72±0.15 56.20±0.33 58.17±0.39 57.87±0.15 60.69±2.43 57.51±0.12 56.71±0.11 58.97±0.19
3 57.11±0.21 56.67±0.12 56.41±0.13 59.08±0.29 58.42±0.23 59.81±0.25 58.08±0.18 57.13±0.26 59.26±0.18
4 57.27±0.14 57.09±0.26 56.00±0.42 59.29±0.16 58.86±0.18 59.75±0.33 58.31±0.23 57.06±0.19 59.32±0.21
5 57.91±0.12 57.32±0.17 56.63±0.31 59.67±0.38 58.81±0.21 59.85±0.30 58.64±0.24 57.46±0.04 59.43±0.23

4 An integrated framework for contrastive learning

To design a generic loss that accounts for both clean and adversarial accuracy, together with a
robustness-promoting term, we utilize the NaCl developed in Section 3 to construct a contrastive
learning framework, called Integrated Neighborhood analysis Contrastive loss (IntNaCl). A general
form of LIntNalL is given by

LIntNaCl(α,LNa(g
1,M, λ),LRobust(g

2, w)) := LNa(g
1,M, λ) + αLRobust(g

2, w), (2)

where LNa(g
1,M, λ) can be chose from {LVAR(g

1,M), LBIAS(g
1,M), LMIXUP(g

1,M, λ)} and

LRobust(g
2, w) := E

[
K(ef(x)

T f(xadv), Ng2(x, ·))w(x)
]
.

Variables g1 and g2 can be chose from {g0, g1, g2} and w(x) facilitates goal-specific weighting
scheme. Throughout our experiments, we will be using an adversarial weighting scheme ŵ detailed
in the appendix. Furthermore, we remark that as LVAR, LBIAS, and LMIXUP all reduce to one same
form when M = 1, we denote the LIntNaCl under these cases by Integrated Contrastive loss (IntCl):
LIntCL(α, g

1, g2, w) := E
[
K(ef(x)

T f(x+), Ng1(x, ·)) + αK(ef(x)
T f(xadv), Ng2(x, ·))w(x)

]
, (3)

which reduces to LSimCLR [4] with α = 0, g1 = g0, to LDebiased [5] with α = 0, g1 = g1, to
LDebiased+HardNeg [12] with α = 0, g1 = g2, to LAdv [13] with α = 1, g1 = g0, g

2 = g0, w(x) ≡ 1.

5 Experimental results

In this section, we will evaluate three major properties of representation learning methods: standard
downstream accuracy, transferability, and robustness. To evaluate the standard downstream accuracy,
we train representation networks on CIFAR100 [15], freeze the network, and only fine-tune a fully-
connected layer that maps representations to outputs on CIFAR100. To evaluate the transferability,
we use the same representation networks and only fine-tune a fully-connected layer on CIFAR10.

Improvement over baselines. In this section, we test the effectiveness of NaCl in improving the
downstream CIFAR100 classification accuracy. Specifically, we consider three baseline methods: 1)
LSimCLR, or equivalently α = 0, g1 = g0,M = 1 in Equation (2); 2) LDebiased+HardNeg, or equivalently
α = 0, g1 = g2,M = 1 in Equation (2); and 3) LIntCl(α = 1, g1 = g2, g

2 = g2, w = ŵ). We list the
results in Table 1. Due to page limit, we only give the results of LMIXUP with λ = 0.9 when applied
on LSimCLR, and with λ = 0.5 when applied on LDebiased+HardNeg and LIntCl. Complete tables of results
obtained with λ = 0.6, 0.7, 0.8 can be found in the appendix. By referring to the Table 1, one can see
that all three NaCl losses are able to improve the standard performance upon their baselines.

Robustness & Transferability. In addition to the discriminative power, we also want to empower the
learned representation with strong adversarial performance and transferability. In appendix Section
E, we list the classification accuracy on CIFAR100 under FGSM attacks with magnitude ε = 0.002.
From the table, one can see that, with the absence of robustness promoting loss (α = 0), all NaCl
methods manage to improve upon the baselines. Notably, LMIXUP with λ = 0.9 boosts the CIFAR100
adversarial accuracy to 34.65% when applied to Debiased+HardNeg. That said, although LVAR and
LBIAS are both useful in enhancing the adversarial performance, LMIXUP improves the baseline by
the largest margin. When we explicitly regularize the adversarial robustness performance (α 6= 0),
the representation network learned via LIntCl yields an adversarial accuracy of 40.05%. When we
strengthen the loss with NaCl, the adversarial performance is further improved.

We validate the transferability of all the methods by fine-tuning a fully-connected layer that maps
representations to outputs on CIFAR10. This is in analogy to the evaluation procedure in [4] - train
a fixed feature extractor on a large-scale dataset and train a linear classifier on top of the frozen
base network with smaller-scale datasets. Section E in the appendix also shows that besides decent
standard and adversarial performance, NCA inspired losses can also improve the transferability.
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6 Conclusion

In this paper, we discover the relationship between contrastive loss and NCA, which motivates us to
generalize existing contrastive losses to neighborhood analysis contrastive losses. We further propose
a generic contrastive learning framework based on NaCl, which learns representations that score high
in both standard accuracy and adversarial accuracy.
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Supplementary Materials

A Derivation from NCA to LSimCLR

argmin
f

n∑
i=1

− log

 M∑
j=1

e−
1
2‖f(xi)−f(x+

j )‖2∑
k 6=i e

− 1
2‖f(xi)−f(xk)‖

2


=argmin

f

n∑
i=1

− log

 M∑
j=1

ef(xi)
T f(x+

j )− 1
2‖f(xi)‖

2− 1
2‖f(x+

j )‖2∑
k 6=i e

f(xi)T f(xk)− 1
2‖f(xi)‖

2− 1
2‖f(xk)‖

2

 (S1)

=argmin
f

n∑
i=1

− log

 M∑
j=1

ef(xi)
T f(x+

j )−1∑
k 6=i e

f(xi)T f(xk)−1

 (S2)

=argmin
f

n∑
i=1

− log


M∑
j=1

ef(xi)
T f(x+

j )

∑
k 6=i e

f(xi)T f(xk)



=argmin
f

n∑
i=1

− log


M∑
j=1

ef(xi)
T f(x+

j )

∑
k 6=i,xk∈{x+

j }
ef(xi)T f(xk) +

∑
k 6=i,xk /∈{x+

j }
ef(xi)T f(xk)

 (S3)

=argmin
f

Ex∼D

− log


M∑
j=1

ef(x)
T f(x+

j )

M∑
j=1

ef(x)
T f(x+

j ) +
N∑
i=1

ef(x)
T f(x−i )


 (S4)

=argmin
f

Ex∼D

− log


M∑
j=1

ef(x)
T f(x+

j )

M∑
j=1

ef(x)
T f(x+

j ) +Ng0(x, {x−i }N )


 ,

where we go from Equation (S1) to Equation (S2) based on the fact that ‖f(x)‖ = 1, and from
Equation (S3) to Equation (S4) assuming that set {xk : k 6= i} = {x+j : 1 ≤ j ≤M} ∪ {x−i : 1 ≤
i ≤ N}.
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B Adversarial Robustness.

Despite neural networks’ supremacy in achieving impressive performance, they have been proved
vulnerable to human-imperceptible perturbations [16, 17, 18, 19]. In the supervised learning setting,
an adversarial perturbation δ is defined to render inconsistent classification result of the input x:
r(x+ δ) 6= r(x), where r is a neural network classifier. A stronger adversarial attack means it can
find δ with higher success attack rate under the same ε-budget (‖δ‖p ≤ ε). One of the most popular
and classical attack algorithms is FGSM [16], where with a fixed perturbation magnitude ε, FGSM
uses the sign of cross entropy gradient to decide between δ = ε and δ = −ε. Another popular attack
method we consider in this paper is PGD [20], which assembles the iterative-FGSM [21] but with
additional projection steps.

8



C Adversarial weighting

Weighting sample loss based on their margins has been proven to be effective in the adversarial
training under supervised settings [22]. Specifically, it is argued that training points that are closer
to the decision boundaries should be given more weight in the supervised loss. While the margin
of a sample in supervised settings is well-defined, it is underdefined in unsupervised settings. To
tackle this, we borrow the intelligence from [13] and mimic how the authors transfer the definition of
adversarial examples in supervised learning to unsupervised learning. Specially, we see that as an
adversarial example in supervised learning is defined by a perturbed sample that has a zero margin
to the decision boundary, authors of [13] define adversarial example in unsupervised learning to be
an augmented sample that maximizes the contrastive loss. With this, we also give our weighting
function as the value of the contrastive loss ŵ(x) := K(ef(x)

T f(x+), Ng(x, ·)), where the estimator
g can be g0, g1, g2. Using this, we see that samples that are originally hard to be distinguished from
other samples (i.e. small probability) are now assigned with bigger weights.
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D Experimental details

All the proposed methods are implemented based on open source repositories provided in the lit-
erature [4, 13, 12]. Five benchmarking contrastive losses are considered as baselines that include:
LSimCLR [4], LDebiased [5], LDebiased+HardNeg [12], LAdv [13]. Unless otherwise specified, the represen-
tation network is trained for 100 epochs. We run five independent trials for each of the experiments
and report the mean and standard deviation in the entries. Throughout our experiments, no adversarial
fine-tuning is performed. We implement the proposed framework using PyTorch to enable the use
of an NVIDIA GeForce RTX 2080 Super GPU, two NVIDIA Tesla P100 GPUs, and four NVIDIA
Tesla V100 GPUs.

Architecture. We follow [4, 12] to incorporate an MLP projection head during the contrastive
learning on resnet18.

Optimizer. Adam optimizer with a learning rate of 3e− 4.

Batching. A batch size of 256 is used across all the experiments.

Methodological hyperparameters. Throughout out experiments, we use τ+ = 0.01 and β = 1.0
for LDebiased [5] and LDebiased+HardNeg [12], α = 1 for LAdv [13]. The same set of hyperparameters are
used in our IntCl and IntNaCl.

Data augmentation. Our data augmentation includes random resized crop, random horizontal
flip, random grayscale, and color jitter. Specifically, we implement the color jitter by calling
torchvision.transforms.ColorJitter(0.8∗ s, 0.8∗ s, 0.8∗ s, 0.2∗ s) and execute with probability
0.8. Random grayscale is performed with probability 0.2.

Adversarial hyperparameters. When evaluating the adversarial robustness using the codebase
provided in [23], we use a PGD step size of 1e− 2, 10 iterations, and 2 random restarts.

Error bar. We run five independent trials for each of the experiments and report the mean and
standard deviation for all tables and figures. The error bars in Figure S1 is omitted for better visual
clarity.
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E Complete tables of results

We give the full table of results in Section 5 in the following. Notably, we gather the standard accuracy,
adversarial accuracy, transfer accuracy, and transfer adversarial accuracy for each specification.

Table S1: The effectiveness evaluation of NaCl on SimCLR (i.e. α = 0, g1 = g0). The best
performance within each loss type is in boldface. We color the overall best performance in blue.

M α = 0, LNa(g0,M, λ) = LVAR(g0,M)
CIFAR100 Acc. FGSM Acc. CIFAR10 Acc. FGSM Acc.

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 56.04±0.17 27.19±0.79 77.32±0.14 44.61±0.33
3 57.11±0.21 27.39±0.36 78.02±0.27 44.23±0.39
4 57.27±0.14 27.63±0.78 77.91±0.29 42.97±0.61
5 57.91±0.12 28.37±0.56 78.09±0.29 44.51±0.44

α = 0, LNa(g0,M, λ) = LBIAS(g0,M)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 55.72±0.15 27.04±0.45 77.40±0.14 44.58±0.41
3 56.67±0.12 28.41±0.24 77.53±0.24 45.21±0.89
4 57.09±0.26 28.20±0.81 77.75±0.22 45.13±0.44
5 57.32±0.17 28.33±0.59 77.93±0.40 44.46±0.53

α = 0, LNa(g0,M, λ) = LMIXUP(g0,M, 0.5)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 54.76±0.29 23.66±0.27 76.78±0.26 40.76±0.66
3 55.21±0.17 24.46±0.44 77.45±0.18 41.78±0.80
4 55.68±0.27 24.19±0.46 77.40±0.24 41.33±0.34
5 55.85±0.16 24.01±0.91 77.50±0.16 40.77±0.66

α = 0, LNa(g0,M, λ) = LMIXUP(g0,M, 0.6)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 54.84±0.35 25.94±0.81 77.11±0.15 42.81±0.83
3 55.49±0.13 26.25±0.89 76.95±0.32 42.99±0.96
4 55.65±0.24 25.41±0.53 77.39±0.37 42.69±1.20
5 55.66±0.22 26.01±0.60 77.26±0.48 43.06±0.79

α = 0, LNa(g0,M, λ) = LMIXUP(g0,M, 0.7)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 55.57±0.32 27.67±0.60 77.09±0.27 44.68±0.71
3 55.83±0.25 27.72±0.59 77.23±0.28 43.68±0.72
4 56.29±0.25 27.92±0.60 77.33±0.29 44.69±0.82
5 56.37±0.32 27.78±0.54 77.40±0.20 45.07±0.98

α = 0, LNa(g0,M, λ) = LMIXUP(g0,M, 0.8)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 55.75±0.21 29.30±0.86 76.80±0.20 46.56±1.02
3 56.27±0.26 29.96±0.29 77.11±0.37 46.52±0.50
4 56.39±0.26 29.49±0.65 77.34±0.31 46.79±0.93
5 56.23±0.13 29.47±0.95 77.40±0.14 47.36±0.69

α = 0, LNa(g0,M, λ) = LMIXUP(g0,M, 0.9)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 56.20±0.33 30.95±0.36 76.96±0.15 48.85±0.75
3 56.41±0.13 30.98±0.90 77.10±0.21 48.76±0.63
4 56.00±0.42 29.90±0.63 77.11±0.40 48.16±0.40
5 56.63±0.31 30.58±0.52 77.04±0.19 47.96±0.46
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Table S2: The effectiveness evaluation of NaCl on Debised+HardNeg (i.e. α = 0, g1 = g2). The best
performance within each loss type is in boldface. We color the overall best performance in blue.

M α = 0, LNa(g2,M, λ) = LVAR(g2,M)
CIFAR100 Acc. FGSM Acc. CIFAR10 Acc. FGSM Acc.

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 58.17±0.39 31.92±0.45 77.43±0.18 48.05±0.38
3 59.08±0.29 32.63±0.74 77.87±0.29 47.58±0.57
4 59.29±0.16 32.48±0.62 77.92±0.17 47.08±0.53
5 59.67±0.38 33.10±0.71 78.04±0.09 46.90±0.91

α = 0, LNa(g2,M, λ) = LBIAS(g2,M)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 57.87±0.15 32.50±0.48 77.43±0.11 48.14±0.31
3 58.42±0.23 33.19±0.60 77.41±0.17 48.09±0.93
4 58.86±0.18 32.65±1.07 77.46±0.29 48.43±0.94
5 58.81±0.21 32.86±0.47 77.58±0.23 48.30±0.39

α = 0, LNa(g2,M, λ) = LMIXUP(g2,M, 0.5)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 60.69±2.43 32.22±0.35 79.36±0.65 48.86±0.34
3 59.81±0.25 32.04±0.67 79.41±0.17 48.91±0.81
4 59.75±0.33 32.03±0.34 79.42±0.18 49.05±0.71
5 59.85±0.30 32.06±0.72 79.45±0.20 48.32±0.70

α = 0, LNa(g2,M, λ) = LMIXUP(g2,M, 0.6)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 58.94±0.29 32.65±0.36 78.67±0.15 49.86±0.59
3 59.43±0.35 32.91±0.40 78.94±0.19 48.84±1.09
4 59.54±0.28 33.02±0.62 78.92±0.29 49.64±0.74
5 59.52±0.28 33.10±0.50 79.29±0.21 49.39±1.02

α = 0, LNa(g2,M, λ) = LMIXUP(g2,M, 0.7)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 58.24±0.19 33.24±0.90 78.30±0.31 50.40±0.83
3 58.74±0.26 33.12±0.59 78.49±0.30 49.85±0.38
4 58.79±0.38 33.63±0.53 78.51±0.29 49.88±0.75
5 58.99±0.18 32.93±0.81 78.57±0.12 49.53±1.55

α = 0, LNa(g2,M, λ) = LMIXUP(g2,M, 0.8)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 57.60±0.15 34.14±0.22 77.96±0.07 51.82±0.68
3 58.04±0.28 33.93±0.45 77.55±0.18 50.30±0.81
4 58.05±0.16 34.16±0.54 77.90±0.21 50.40±0.43
5 58.43±0.27 33.87±0.62 77.90±0.17 50.78±0.95

α = 0, LNa(g2,M, λ) = LMIXUP(g2,M, 0.9)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 57.16±0.15 34.25±0.55 77.19±0.09 51.42±0.45
3 57.08±0.10 33.96±0.19 77.21±0.26 51.30±1.05
4 57.36±0.19 34.29±0.15 77.34±0.34 51.16±0.55
5 57.38±0.16 34.25±0.30 77.13±0.16 50.68±0.74
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Table S3: The effectiveness evaluation of NaCl (M 6= 1) on IntCl (M = 1) when α = 1, g1 = g2 =
g2. The best performance within each loss type is in boldface. We color the overall best performance
in blue.

M α 6= 0, LNa(g2,M, λ) = LVAR(g2,M)
CIFAR100 Acc. FGSM Acc. CIFAR10 Acc. FGSM Acc.

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 57.51±0.12 41.01±0.36 76.88±0.49 58.77±0.67
3 58.08±0.18 41.02±0.83 76.95±0.19 58.28±0.50
4 58.31±0.23 41.49±0.51 77.30±0.30 58.61±0.80
5 58.64±0.24 40.50±0.23 77.42±0.17 58.11±0.72

α 6= 0, LNa(g2,M, λ) = LBIAS(g2,M)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 56.71±0.11 39.80±0.57 76.55±0.27 58.44±0.31
3 57.13±0.26 40.53±0.29 76.67±0.22 58.47±0.31
4 57.06±0.19 40.85±0.31 76.34±0.22 58.91±0.62
5 57.46±0.04 41.00±0.86 76.60±0.37 57.98±0.47

α 6= 0, LNa(g2,M, λ) = LMIXUP(g2,M, 0.5)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 58.97±0.19 40.25±0.52 78.61±0.20 58.41±0.59
3 59.26±0.18 40.96±0.58 78.83±0.22 59.20±1.25
4 59.32±0.21 40.82±0.54 78.83±0.27 59.03±0.52
5 59.43±0.23 41.01±0.34 78.80±0.21 59.51±0.93

α 6= 0, LNa(g2,M, λ) = LMIXUP(g2,M, 0.6)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 58.55±0.34 40.85±0.62 78.34±0.22 59.56±0.88
3 59.05±0.21 40.83±0.44 78.41±0.12 59.14±0.78
4 59.06±0.25 40.80±0.89 78.61±0.22 58.41±1.00
5 59.10±0.23 40.68±0.50 78.63±0.21 58.92±0.76

α 6= 0, LNa(g2,M, λ) = LMIXUP(g2,M, 0.7)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 58.00±0.18 40.35±0.34 77.73±0.24 59.40±1.27
3 58.23±0.18 40.94±0.75 77.91±0.25 59.57±0.81
4 58.20±0.25 40.95±0.45 77.89±0.20 59.49±0.49
5 58.37±0.14 41.15±0.48 78.27±0.26 59.17±0.94

α 6= 0, LNa(g2,M, λ) = LMIXUP(g2,M, 0.8)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 57.07±0.24 41.29±0.57 77.27±0.28 60.16±0.51
3 57.62±0.22 40.93±0.49 77.54±0.27 59.47±0.52
4 57.61±0.25 41.36±0.41 77.50±0.34 60.28±0.68
5 57.56±0.18 40.71±0.34 77.58±0.42 59.99±0.30

α 6= 0, LNa(g2,M, λ) = LMIXUP(g2,M, 0.9)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 56.54±0.33 40.85±0.13 76.81±0.22 60.40±0.46
3 56.69±0.11 41.23±0.66 76.98±0.22 60.13±0.56
4 56.43±0.26 41.56±0.56 76.97±0.20 61.21±0.49
5 56.86±0.11 41.09±0.31 76.91±0.21 60.09±0.39
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F Adversarial accuracy

For a more comprehensive study of adversarial robustness, we extend Table S2 to include PGD attack
results with the same strength as FGSM attacks (ε = 0.002). One can readily see from Table S4 that
the adversarial accuracy under PGD attacks of the same magnitude is slightly lower (roughly 2-3%
lower) as PGD is a stronger attack. Nevertheless, the trend is consistent – the models that exhibit
better adversarial robustness w.r.t. FGSM attacks also demonstrate superior adversarial robustness
w.r.t. PGD attacks.

Table S4: The complete Table S2 (Table 1 right column) with additional PGD accuracy.

M α = 0, LNa(g2,M, λ) = LVAR(g2,M)
CIFAR100 Acc. FGSM Acc. PGD Acc. CIFAR10 Acc. FGSM Acc. PGD Acc.

1 56.83±0.20 31.03±0.41 28.80±0.48 77.24±0.29 48.38±0.70 46.24±0.77
2 58.17±0.39 31.92±0.45 29.77±0.43 77.43±0.18 48.05±0.38 45.63±0.50
3 59.08±0.29 32.63±0.74 30.33±0.84 77.87±0.29 47.58±0.57 45.02±0.62
4 59.29±0.16 32.48±0.62 30.12±0.73 77.92±0.17 47.08±0.53 44.52±0.54
5 59.67±0.38 33.10±0.71 30.87±0.88 78.04±0.09 46.90±0.91 44.20±1.08

α = 0, LNa(g2,M, λ) = LBIAS(g2,M)

1 56.83±0.20 31.03±0.41 28.80±0.48 77.24±0.29 48.38±0.70 46.24±0.77
2 57.87±0.15 32.50±0.48 30.25±0.60 77.43±0.11 48.14±0.31 45.81±0.43
3 58.42±0.23 33.19±0.60 30.93±0.59 77.41±0.17 48.09±0.93 45.67±0.93
4 58.86±0.18 32.65±1.07 30.22±1.09 77.46±0.29 48.43±0.94 45.99±1.15
5 58.81±0.21 32.86±0.47 30.57±0.55 77.58±0.23 48.30±0.39 45.80±0.48

α = 0, LNa(g2,M, λ) = LMIXUP(g2,M, 0.5)

1 56.83±0.20 31.03±0.41 28.80±0.48 77.24±0.29 48.38±0.70 46.24±0.77
2 60.69±2.43 32.22±0.35 30.11±0.43 79.36±0.65 48.86±0.34 46.67±0.40
3 59.81±0.25 32.04±0.67 29.87±0.65 79.41±0.17 48.91±0.81 46.61±0.86
4 59.75±0.33 32.03±0.34 29.85±0.36 79.42±0.18 49.05±0.71 46.70±0.80
5 59.85±0.30 32.06±0.72 29.99±0.76 79.45±0.20 48.32±0.70 45.89±0.82

α = 0, LNa(g2,M, λ) = LMIXUP(g2,M, 0.6)

1 56.83±0.20 31.03±0.41 28.80±0.48 77.24±0.29 48.38±0.70 46.24±0.77
2 58.94±0.29 32.65±0.36 30.16±0.27 78.67±0.15 49.86±0.59 47.38±0.70
3 59.43±0.35 32.91±0.40 30.36±0.52 78.94±0.19 48.84±1.09 46.24±1.32
4 59.54±0.28 33.02±0.62 30.68±0.72 78.92±0.29 49.64±0.74 47.15±0.88
5 59.52±0.28 33.10±0.50 30.63±0.48 79.29±0.21 49.39±1.02 46.89±1.12

α = 0, LNa(g2,M, λ) = LMIXUP(g2,M, 0.7)

1 56.83±0.20 31.03±0.41 28.80±0.48 77.24±0.29 48.38±0.70 46.24±0.77
2 58.24±0.19 33.24±0.90 30.40±1.06 78.30±0.31 50.40±0.83 47.50±0.89
3 58.74±0.26 33.12±0.59 29.94±0.62 78.49±0.30 49.85±0.38 46.69±0.32
4 58.79±0.38 33.63±0.53 30.70±0.60 78.51±0.29 49.88±0.75 47.01±0.96
5 58.99±0.18 32.93±0.81 29.89±0.99 78.57±0.12 49.53±1.55 46.41±1.91

α = 0, LNa(g2,M, λ) = LMIXUP(g2,M, 0.8)

1 56.83±0.20 31.03±0.41 28.80±0.48 77.24±0.29 48.38±0.70 46.24±0.77
2 57.60±0.15 34.14±0.22 31.35±0.25 77.96±0.07 51.82±0.68 48.81±0.85
3 58.04±0.28 33.93±0.45 31.31±0.62 77.55±0.18 50.30±0.81 47.41±0.76
4 58.05±0.16 34.16±0.54 31.41±0.61 77.90±0.21 50.40±0.43 47.58±0.47
5 58.43±0.27 33.87±0.62 31.23±0.76 77.90±0.17 50.78±0.95 47.96±1.12

α = 0, LNa(g2,M, λ) = LMIXUP(g2,M, 0.9)

1 56.83±0.20 31.03±0.41 28.80±0.48 77.24±0.29 48.38±0.70 46.24±0.77
2 57.16±0.15 34.25±0.55 31.83±0.57 77.19±0.09 51.42±0.45 49.09±0.53
3 57.08±0.10 33.96±0.19 31.56±0.34 77.21±0.26 51.30±1.05 48.60±1.28
4 57.36±0.19 34.29±0.15 31.93±0.32 77.34±0.34 51.16±0.55 48.64±0.61
5 57.38±0.16 34.25±0.30 31.89±0.26 77.13±0.16 50.68±0.74 48.14±0.83
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In Figure S1, we show the adversarial accuracy as a function of the FGSM attack strength ε. Specif-
ically, we range the attack strength from 0.002 to 0.032 and give the adversarial accuracy of our
proposals (IntCl & IntNaCl) together with baselines under all attacks. From Figure S1, one can see
that among all baselines, AdvW demonstrates the best adversarial robustness, whereas our proposals
still consistently win over it by a noticeable margin.

Figure S1: The adversarial accuracy under FGSM attacks of different strength on CIFAR100.
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G Accuracy on larger epochs.

As training the representation with more epochs can also expose the data to more augmentations, we
carry out an additional experiments to compare the efficiency and effectiveness of baseline methods
with significant more training epochs. Specially, [24] has reported a LSimCLR CIFAR100 accuracy of
54.74% after 200 epochs, compared to LVAR(g0, 2)’s 56.04% after 100 epochs. In our reproduction
of the LSimCLR 200-epoch result, we have witnessed an accuracy of 57.45% however at the cost of
1.34X training time (cf. 200 epochs with LSimCLR takes 211 mins vs. 100 epochs with LVAR(g0, 2)
takes 158 mins). Additionally, we see LSimCLR reaches 61.90% and Debiased+HardNeg stops at
62.74%, while LVAR(g0, 2) and LVAR(g2, 2) improve upon them individually by reaching 62.37%
and 63.51%. We refer the readers to the appendix for detailed linear evaluation results on CIFAR100
with extended training epochs.
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H The effect of λ

To investigate the effect of λ on different metrics, we include in Figure S2 the standard and adversarial
accuracy on CIFAR100 and CIFAR10 as functions of λ. Intriguingly, we see that all the accuracy
curves in Figure S2(a) have tended to increase over λ. Comparatively, two of the accuracy curves in
Figure S2(b), the standard accuracy on CIFAR100 and CIFAR10, show downward trends. One plausi-
ble reason is related to the room for improvements of individual baselines. Since Debiased+HardNeg
is a much stronger baseline than SimCLR, it is closer to the robustness-accuracy trade-off.

(a) NaCl on SimCLR, i.e. α = 0,LNa = LMIXUP, g
1 = g0 in Equation (2)

(b) NaCl on Debiased+HardNeg, i.e. α = 0,LNa = LMIXUP, g
1 = g2 in Equation (2)

Figure S2: The standard and adversarial accuracy (%) on CIFAR100 and CIFAR10 as functions of λ.
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I Extended runtime

#epoch 100 200 400 600 800 1000

LSimCLR 53.69 57.45 60.06 60.96 61.27 61.90
LVAR(g0, 2) 56.04 59.44 61.42 62.37 62.06 -
LBIAS(g0, 2) 55.72 59.31 61.19 61.66 62.49 -

LMIXUP(g0, 2, 0.9) 56.20 58.98 61.81 62.43 62.46 -
LDebiased+HardNeg 56.83 59.35 61.77 62.74 62.68 -
LVAR(g2, 2) 58.17 60.66 62.38 63.43 63.51 -
LBIAS(g2, 2) 57.87 60.06 62.36 62.58 62.86 -

LMIXUP(g2, 2, 0.5) 60.69 62.14 64.06 65.59 65.53 -
Table S5: The CIFAR100 linear evaluation results (%) after different numbers of training epochs.
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J Supervised learning baseline

We give in the following the standard and adversarial accuracy of a supervised learning baseline
with the same network architecture, optimizer, and batch size. In our self-supervised representation
learning experiments, we train the representation network for 100 epochs and train the downstream
fully-connected classifying layer for 1000 epochs. Therefore, to obtain a fair supervised learning
baseline, we train the complete network end-to-end for 1000 epochs. We follow the same procedures
in evaluating the transfer standard accuracy and adversarial accuracy as described in Section 5.

CIFAR100 (std. acc., FGSM acc., PGD acc.): 65.16±0.32, 35.89±0.23, 32.62±0.23.

Transfer CIFAR10 (std. acc., FGSM acc., PGD acc.): 77.45±0.21, 44.39±0.47, 40.35±0.52.

19


	Introduction
	Related Work
	Neighborhood analysis Contrastive loss
	An integrated framework for contrastive learning
	Experimental results
	Conclusion
	Derivation from NCA to LSimCLR
	Adversarial Robustness.
	Adversarial weighting
	Experimental details
	Complete tables of results
	Adversarial accuracy
	Accuracy on larger epochs.
	The effect of 
	Extended runtime
	Supervised learning baseline

