
Self-Supervised GNN that Jointly Learns to Augment

Zekarias T. Kefato
KTH Royal Institute of Technology

Stockholm, Sweden
zekarias@kth.se

Sarunas Girdzijauskas
KTH Royal Institute of Technology

Stockholm, Sweden
sarunasg@kth.se

Hannes Stärk
Technical University of Munich

Munich, Germany
hannes.staerk@tum.de

Abstract

Self-supervised Learning (SSL) aims at learning representations of objects without
relying on manual labeling. Recently, a number of SSL methods for graph represen-
tation learning have achieved performance comparable to SOTA semi-supervised
Graph Neural Networks (GNNs). One of the key challenges is data-augmentation,
for which existing methods rely on heuristically crafted techniques. In this study,
we propose a novel method for jointly learning both the augmentation and rep-
resentation by leveraging the inherent signal encoded in the graph. Besides, to
allow efficient use of resources we propose a new architecture that augments in
the latent space as opposed to the input space. We carried out experiments us-
ing 14 publicly available datasets on three node classification tasks. The results
show that our method achieves comparable performance with semi-supervised
GNNs, and it is on par with SSL methods for GNNs. Source code is available at
https://github.com/zekarias-tilahun/graph-surgeon

1 Introduction

In SSL, we seek to learn representations of objects (e.g. images and graphs) without relying on
manual labeling, of particular interest in this study is SSL for GNN (SSL-GNN). Our emphasis
is on methods based on the Siamese architecture [4, 5, 15, 12, 7, 9, 6, 24, 13, 26, 23, 11, 22].
Self-supervised techniques using Siamese networks learn representations that benefit from data-
augmentation (perturbation) [24], and devising suitable augmentation techniques is one of the main
challenges. Since there are no standard augmentation techniques for graphs, existing studies rely on
different heuristics and/or trial and error [22].

A Siamese architecture uses two (left and right) networks, and two differently augmented views of
the same object are fed to these networks. Learning is carried out by maximizing the agreement
between the outputs of these networks. Obviously, this leads to a trivial solution, and hence one has to
devise a prevention strategy. To this end, one can use contrastive terms; however, since drawing truly
negative samples is difficult recent studies propose asymmetry as a solution. Nonetheless, asymmetric
methods rely on careful engineering tricks.

In this study, we propose a novel SSL-GNN architecture called SURGEON (self-supervised GNN
that jointly learns to augment). Unlike existing methods that rely on heuristics and/or trial and
error, we design SURGEON in such a way that data augmentation is jointly learned with the
graph representation. Furthermore, SURGEON neither uses explicit negative samples nor employs
engineering tricks. Instead, we use a principled constrained optimization objective that draws

NeurIPS 2021Workshop on Self-Supervised Learning: Theory and Practice.

https://github.com/zekarias-tilahun/graph-surgeon

Figure 1: The architecture of SURGEON, (A)
first generates two augmented views of an input
signal from two learnable augmenter functions
fθ1 and fθ2 and then passes them to a shared
GNN encoder hθ. Meanwhile, (B) first encodes
or maps the input signal to a latent space and
passes the latent representation through the two
learnable augmenters, fθ1 and fθ2 .

inspiration from Laplacian Eigenmaps [2] to prevent a trivial solution. In addition, to improve the use
of resources, we propose a new architecture that does augmentation in the latent space as opposed to
the input feature space.

We have carried out extensive experiments using 14 publicly available datasets on the node classifica-
tion task. We compare SURGEON against strong SOTA semi-supervised and self-supervised GNNs.
The results show that SURGEON is comparable to semi-supervised methods, on average just 2 percent-
age points away from the best performing ones. However, it is on par with the SSL-GNN baselines.

2 SURGEON

We consider an undirected graph G = (A,X), where A ∈ [0, 1]N×N is the adjacency matrix and
X ∈ RN×F is a feature matrix, where each row i in X encodes an attribute signal xi ∈ RF for
node i. Since SURGEON is agnostic to the type of GNN architecture, we simply assume that we
have access to a GNN encoder Z = hθ(A,X) parameterized by θ. The architecture of our model is
shown in Fig. 1

2.1 Learning Data Augmentation

Given a graph G, in existing methods two augmented views G1 = t1(G) and G2 = t2(G) are
generated by applying augmentation techniques t1 ∼ T and t2 ∼ T , sampled from a set of
predefined techniques, T . However, these techniques perform well on some datasets and poorly on
some others, and it is not well understood why this is the case yet. One remedy is to automatically
learn the relevant augmentation from the graph signal, and this has not been explored yet.

In this study, we propose a simple yet novel data augmentation technique that is learned based on
the signal encoded in the graph. Therefore, we replace t1 and t2, with trainable functions fθ1 and
fθ2 parametrized by θ1 and θ2. We model f as an MLP, i.e., two augmented views are generated
as X1 = fθ1(X), X2 = fθ2(X), where X1 ∈ RN×D and X2 ∈ RN×D and θ1 = {W (l)

1 : l =

1, . . . L1} and θ2 = {W (l)
2 : l = 1, . . . L2}, where L1 and L2 are the number of layers of fθ1 and

fθ2 . In order for the graph signal to govern the learned augmentations X1 and X2, the key design
choice in SURGEON is to jointly learn θ1 and θ2 with θ.

Augmentations are commonly performed in the input space, as in Fig. 1 (A), which we refer to as
the Pre architecture. In order to improve resource usage, we propose a new architecture as shown in
Fig. 1 (B) that does augmentation in the latent space, and we refer to it as the Post architecture.

2.2 Joint Training of the Parameters

The following discussion assumes the pre architecture. In the forward pass, SURGEON produces
two representations Z1 and Z2 as Z1 = hθ(A, fθ1(X)) and Z2 = hθ(A, fθ2(X)). Our goal in
a SSL-GNN framework is to maximize the agreement between these two representations. To this
end, we closely follow Laplacian Eigenmaps [2] and minimize the mean squared error between the
normalized representations (unit vectors) of two data points. Though in Laplacian Eigenmaps the
two data points correspond to different objects (e.g., two different nodes, images), in our case, these
are just the unit vectors Z̄1 and Z̄2 obtained from Z1 and Z2 respectively. Hence our objective is:

Lθ = ||Z̄1 − Z̄2||2F (1)

2

However, Eq. 1 admits a trivial solution, that is, collapse into a single point or a subspace [2]. For
this reason, we modify E.q. 1 and incorporate an orthonormality constraint inspired by the Laplacian
Eigenmaps. Moreover, we want to jointly optimize the parameters of the augmenters. To achieve
these goals, first we add the constraints Z̄1Z̄1

T
= IN and Z̄2Z̄2

T
= IN and second we use the

gradients to update all the parameters, θ, θ1 and θ2. We can relax the constraints using the Lagrangian
and obtain a regularized objective, which we call Laplacian Eigenmaps loss as

Lθ,θ1,θ2 = ||Z̄1 − Z̄2||2F + γ
(
||Z̄1Z̄1

T − IN ||F + ||Z̄2Z̄2
T − IN ||F

)
(2)

Eq. 2 encourages positive pairs across Z̄1 and Z̄2 to be similar to each other, and the orthonormality
constraint ensures that each row in Z̄1 or Z̄2 is similar to itself and orthonormal to other rows.
Consequently, a trivial solution is avoided [2].

Eq. 2 can be improved [1] by replacing the ||Z̄1Z̄1
T − IN ||F and ||Z̄2Z̄2

T − IN ||F terms, which
require an N ×N identity matrix, with ||Z̄1

T
Z̄1 − IFL

||F and ||Z̄2
T
Z̄2 − IFL

||F , where the final
representation dimension FL � N .

3 Experiments

We validate the practical use of SURGEON using 14 publicly available datasets, ranging from small
to large-scale graphs. A detailed description is available in Appendix A.1. We compare SUR-
GEON against 11 state-of-the-art baselines grouped into two

• Semi-Supervised: Six of the baselines are methods that use a fraction of the node labels
during training, three of which (GCN [14], GAT [20], GRAPHSAGE [10]) are used for
small and medium-size graphs, and the rest (CLUSTERGCN [8], GRAPHSAINT [25], and
PPRGO [3]) for large-scale graphs.

• Self-supervised: There are five methods under this group, three of which (DGI [21], MV-
GRL [11], and GCA [26]) use a contrastive architecture to prevent a trivial solution and the
other two SELFGNN [13] and BGRL [19] use asymmetry. Because these two techniques
extend the same method, BYOL [9], for visual representation to graph representation and
use the same code base, we present them as one.

3.1 Experimental Protocol

For all the datasets we have three splits, training, validation and test. For some of them, we use the
splits provided by PyTorch Geometric, and for the rest, we randomly split them into 5% training,
15% validation and 80% test sets. We tune the hyperparameters of all the algorithms using Bayesian
optimization, however for a fair comparison, we fix the representation dimension to 128. In addition,
we run all the models for 500 epochs and take the epoch with the best validation score.

We train the semi-supervised methods using the training split and tune their hyperparameters using
the validation set. Finally, we use the test set to infer the labels and report their performance. For
the self-supervised methods, we train them without any label and tune them using the validation set.
Following standard practice, they are evaluated under the linear protocol. This means that we freeze
the models and add a logistic regression (linear) classifier on top. The classifier is trained using only
the training split for 100 and 500 epochs, for small and large datasets, respectively. Similar to the
semi-supervised setting, we use the test set to simply predict the labels and report prediction quality.

We have three types of node classification tasks, which are binary, multi-class, and multi-label
classifications. Similar to existing studies, for the binary and multi-class tasks, we use accuracy, and
for the multi-label, the Area Under the Receiver Operating Characteristic Curve (ROC-AUC). Unless
a different setting is stated, we assume the aforementioned protocol.

3.2 Results

The node classification results are reported in Tables 1 and 2. Overall, SURGEON is comparable to
the semi-supervised baselines and on par (sometimes marginally better and at times marginally lower
than) the self-supervised baselines.

3

Datasets
Algorithms

Semi-Supervised Contrastive Asymmetric SURGEON
GCN GAT GRAPHSAGE DGI MVGRL GCA SELFGNN/

BGRL
Cora 60.1±.001 58.27±.003 57.45±.003 50.66±.001 39.42±.193 37.64±.014 54.61±.135 56.33±.07
DBLP 82.7±.002 82.88±.002 81.39±.005 78.87±.002 69.2±.052 81.16±.007 81.32±.071 81.48±.09
PubMed 85.62±.001 84.98±.002 84.73±.001 84.28±.001 77.99±.315 82.76±.005 84.6±.076 84.94±.091
Physics 95.4±.001 95.02±.002 † 94.92±.001 91.18±.024 † 95.11±.07 95.11±0.025
CS 91.87±.001 91.07±.002 91.44±.001 91.72±.001 87.18±.095 88.01±.005 92.23±.01 92.03±.0
Computers 88.54±.003 88.3±.006 87.93±.004 80.28±.004 78.57±.14 74.04±.005 86.23±.139 85.16±.133
Photo 93.02±.003 93.18±002 93.64±.002 92.36±.06 86.04±.12 84.93±.009 92.87±.08 92.27±.05
Actor 28.38±.008 28.62±.01 33.88±.007 29.93±.007 63.3±.03 27.39±.01 29.41±1.46 30.19±.34
WikiCS 76.87±.006 77.38±.005 77.41±.006 70.01±.007 61.7±.52 75.25±.006 75.34±.528 75.59±.11
Facebook 89.5±.002 89.3±.01 89.25±.002 82.42±.001 78.88±0.045 86.29±0.004 86.38±.084 84.92±0.015
Flickr 51.66±.001 42.35±.001 52.11±.001 45.94±.001 † † 51.26±.528 50.91±.054
Github 86.14±.001 86.16±.001 85.77±.001 83.84±.001 83.93±0.032 † 85.58±.053 85.7±.028

Table 1: The classification accuracy results along with the standard deviation. The bold highlight
indicates the best performing algorithms from both the semi-supervised and self-supervised methods.
† indicates that the algorithm has crashed because of an out-of-memory error.

Algorithms Datasets
Yelp Reddit

CLUSTERGCN (semi) 78.21 95.33
GRAPHSAINT (semi) 75.62 95.73
PPRGO (semi) 77.7 91.8
SURGEON 77.44 91.22

Table 2: The prediction quality for the large-
scale datasets. ROC-AUC for Yelp and Accu-
racy for Reddit. For this experiment, we use
semi-supervised and scalable GNN architec-
tures as the full-batch ones do not fit in GPU
memory. In addition, all the SSL-GNN base-
lines throw an out-of-memory error.

As expected, the semi-supervised models are consistently better than the self-supervised ones, except
for Actor. MVGRL gives the best result, with more than 90% improvement over the best performing
method. This comes as a result of using higher-order augmentation that happens to be beneficial
for the Actor dataset. A similar performance is not observed for MVGRL on the other datasets.
This provides a motivation for automatically learning high-order topology signals that benefit some
datasets. As stated earlier, this will be covered in future work.

However, our finding showcases that just using the learned attribute augmentations and without
requiring explicit negative samples, one can achieve a performance consistently close to semi-
supervised models across a number of datasets and classification tasks. On average, our model is
at most 2 percentage points away from the best performing semi-supervised method. Moreover, it
scales to large networks with hundreds of millions of edges, where the other SSL-GNN methods failed
to handle. Ablation studies and implementation details are available in the appendix.

4 Conclusion

In this paper, we propose a self-supervised graph representation learning method called SUR-
GEON based on the Siamese network. Unlike prior methods that rely on heuristics for data augmenta-
tion, our method jointly learns the data augmentation with the representation (embedding) guided by
the signal encoded in the graph. By capitalizing on the flexibility of the learnable augmentations,
we propose an alternative new strategy for augmentation, called post-augmentation, which happens
after an encoding. This is in contrast to the standard pre-augmentation strategy that happens before
the encoding. We also show that the alternative strategy significantly improves the scalability and
efficiency of our model.

Furthermore, the method does not require explicit contrastive terms or negative sampling. However,
contrary to related studies with no contrastive terms, we employ a scalable principled constrained
optimization inspired by Laplacian Eigenmaps, as opposed to engineering tricks to prevent collapse.

We perform an extensive empirical evaluation of the proposed method using 14 publicly available
datasets on three types of node classification tasks. Besides, we compare the method with strong
SOTA baselines, six semi-supervised GNNs, and five self-supervised GNNs. Our finding shows
that SURGEON is comparable to the semi-supervised GNNs and on-par with the self-supervised ones.

4

References
[1] A. Bardes, J. Ponce, and Y. LeCun. Vicreg: Variance-invariance-covariance regularization for

self-supervised learning, 2021.

[2] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data represen-
tation. Neural Computation, 15(6):1373–1396, 2003.

[3] A. Bojchevski, J. Klicpera, B. Perozzi, A. Kapoor, M. Blais, B. Rózemberczki, M. Lukasik, and
S. Günnemann. Scaling graph neural networks with approximate pagerank. Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Jul
2020.

[4] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. Signature verification using a
"siamese" time delay neural network. In Proceedings of the 6th International Conference on
Neural Information Processing Systems, NIPS’93, page 737–744, San Francisco, CA, USA,
1993. Morgan Kaufmann Publishers Inc.

[5] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin. Unsupervised learning of
visual features by contrasting cluster assignments. CoRR, abs/2006.09882, 2020.

[6] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging
properties in self-supervised vision transformers. CoRR, abs/2104.14294, 2021.

[7] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. A simple framework for contrastive
learning of visual representations. CoRR, abs/2002.05709, 2020.

[8] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh. Cluster-gcn. Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Jul
2019.

[9] J. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch, B. Á.
Pires, Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and M. Valko. Bootstrap
your own latent: A new approach to self-supervised learning. CoRR, abs/2006.07733, 2020.

[10] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs,
2018.

[11] K. Hassani and A. H. K. Ahmadi. Contrastive multi-view representation learning on graphs.
CoRR, abs/2006.05582, 2020.

[12] K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick. Momentum contrast for unsupervised visual
representation learning. CoRR, abs/1911.05722, 2019.

[13] Z. T. Kefato and S. Girdzijauskas. Self-supervised graph neural networks without explicit
negative sampling. CoRR, abs/2103.14958, 2021.

[14] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks,
2017.

[15] I. Misra and L. van der Maaten. Self-supervised learning of pretext-invariant representations.
CoRR, abs/1912.01991, 2019.

[16] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang. Geom-gcn: Geometric graph convolutional
networks, 2020.

[17] B. Rozemberczki, C. Allen, and R. Sarkar. Multi-scale attributed node embedding, 2021.

[18] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann. Pitfalls of graph neural network
evaluation, 2019.

[19] S. Thakoor, C. Tallec, M. G. Azar, R. Munos, P. Veličković, and M. Valko. Bootstrapped
representation learning on graphs, 2021.

[20] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention
networks, 2018.

5

[21] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm. Deep graph
infomax, 2018.

[22] Y. You, T. Chen, Y. Shen, and Z. Wang. Graph contrastive learning automated. CoRR,
abs/2106.07594, 2021.

[23] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. Graph contrastive learning with
augmentations. CoRR, abs/2010.13902, 2020.

[24] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny. Barlow twins: Self-supervised learning via
redundancy reduction. CoRR, abs/2103.03230, 2021.

[25] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna. Graphsaint: Graph sampling
based inductive learning method, 2020.

[26] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang. Graph contrastive learning with adaptive
augmentation. In Proceedings of the Web Conference 2021, WWW ’21, page 2069–2080, New
York, NY, USA, 2021. Association for Computing Machinery.

A Appendix

A.1 Dataset Description

All of the datasets are collected from PyTorch Geometric (PyG) 1, and grouped as

• Citation Networks (Cora Full, DBLP, and PubMed): Paper to paper citation networks, and
we classify papers into different subjects [10].

• Co-Author Networks (Computer Science (CS) an Physics): Author collaboration network
from Microsoft Academic Graph, and the task is to predict the active field of authors [18].

• Co-Purchased Products Network (Computers and Photo): Co-purchased products from the
respective categories on Amazon, and the task is to predict the refined categories [18].

• Wikipedia (Actor and WikiCS): WikiCS contains Wikipedia hyperlinks between Computer
Science articles, and we classify articles into branches of CS [18], and Actor contains actors
co-occurrence on the same Wikipedia article and we classify actors into groups based word
of actors’ Wikipedia [16].

• Social (Facebook, Flickr, GitHub, Reddit, and Yelp): Facebook contains a page to page
graph of verified Facebook sites, and we want to classify pages into their categories [17].
Flickr contains a network of images based on common properties (e.g., geo-location) along
with their description, and the task is to predict a unique tag of an image [25]. GitHub
contains the social network of developers, and we want to classify developers as web or
machine learning developers [17]. Yelp is also the social network of Yelp users, and we
predict business categories each user has reviewed. For Reddit, we predict the subreddits
(communities) of user posts [10, 25].

A brief summary of the datasets is provided in Table 3. We also group them into two, as large (Yelp
and Reddit) and small (the rest).

A.2 Ablation Study

In the following, we investigate the impact of different aspects of SURGEON.

A.2.1 Loss Function

We have seen the regularized optimization objective in Section 2.2 and also shown a way to improve
it. In the following, we analyze the effect of using the original vs. the improved loss function with
respect to prediction accuracy and resource usage. For the qualitative experiment, we train both
flavors for 100 epochs and just 1 epoch otherwise. The results of this experiment are reported in Fig 2.
As expected, both flavors achieve similar qualitative performance. Nonetheless, the improved version
is significantly better than the original one in terms of memory usage and run time.

1https://pytorch-geometric.readthedocs.io/en/latest/index.html

6

Dataset N M F C Task
Cora Full 19,793 126,842 8,710 70 MCC
DBLP 17,716 105,734 1,639 4 MCC
PubMed 19,717 88,648 500 3 MCC
Physics 34,493 495,924 8,415 5 MCC
CS 18,333 163,788 6,805 15 MCC
Computers 13,752 491,722 467 10 MCC
Photo 7,650 238,162 745 8 MCC
Facebook 22,470 342,004 128 4 MCC
Flickr 89,250 899,756 500 7 MCC
GitHub 37,700 578,006 128 2 BC
WikiCS 11,701 297,110 300 10 MCC
Actor 7,600 30,019 932 5 MCC

Yelp 716,847 13,954,819 300 100 MLC
Reddit 232,965 114,615,892 602 41 MCC

Table 3: Summary of the
datasets, and N = |V |, M =
|E|, F is the number of fea-
tures, and C is the number
of classes. BC, MCC and
MLC represent binary, multi-
class and multi-label classifica-
tion, respectively

Accuracy Avg. Time (in Sec) GPU Memory (MB)

CS
DBLP

Fa
ce

bo
ok

Pho
to

W
iki

CS
CS

DBLP

Fa
ce

bo
ok

Pho
to

W
iki

CS
CS

DBLP

Fa
ce

bo
ok

Pho
to

W
iki

CS
0

2500

5000

7500

0.0

0.1

0.2

0.3

0.4

0

25

50

75

Dataset

Loss Improved Original

Figure 2: Comparison of the original
and improved loss function in terms
of accuracy, memory usage and run
time (time to finish an epoch).

50

60

70

80

90

25
0

50
0

75
0

10
00

12
50

Batch Size

A
cc

ur
ac

y

Dataset
Flickr
GitHub
Physics
Reddit
Yelp

Figure 3: Effect of batch size on SURGEON’s
performance

A.2.2 Batch Size

As contrastive signals are indirectly injected because of the orthogonality constraint of Eq. 2, it is
important to analyze the impact of batch size to see if a large batch size is needed to effectively avoid
trivial solutions. For this reason, we train the model using sampled neighborhood subgraphs [10]
instead of full-batch, and both the model and the linear head are trained for 100 epochs. The results
are reported in Fig. 3, and in general, performance is directly proportional to batch size until a certain
point. For small datasets, there is improvement up to 1024. The largest improvements are for the
GitHub and Physics datasets, which are 7.57 (from 75.38% to 82.95%) and 7.66 percentage points of
accuracy (from 74.35% to 82.01%), respectively. However, that is not the case for the larger ones
(Reddit and Yelp), where both smaller and larger batch sizes give a comparable performance. Overall,
we have not observed qualitative differences for batch sizes bigger than 1024. In our experiments,
batch size greater than 1024 is only related to faster training, not improved quality.

7

CS DBLP Facebook Photo WikiCS

250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250

65

70

75

90

91

92

93

82

84

86

70

75

80

88

89

90

91

92

Embedding size

A
cc

ur
ac

y

Algorithm DGI GCA MVGRL SelfGNN/BGRL Surgeon

Figure 4: Effect of embedding size on SURGEON and the SSL-GNN baselines.

D Dropout γ µ

CS DBLP Flickr Photo WikiCS CS DBLP Flickr Photo WikiCS CS DBLP Flickr Photo WikiCS CS DBLP Flickr Photo WikiCS

0.000

0.002

0.004

0.006

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

0.8

0

100

200

300

400

Dataset

Augmentation Post Pre

Figure 5: Tuned values of the hyperparameters of SURGEON for the pre and post augmentation
techniques. D is the number of features after augmentation and the GNN encoder for pre and post
augmentations, respectively. γ the weight of the constraint in Eq. 2, and µ is the learning rate.

A.2.3 Embedding Size

To provide a perspective, for this analysis we include the baselines. We use the same setting as the
first experiment (Tables 1 and 2), and we examine embedding sizes in [256, 512, 768, 1024, 1280].
SURGEON and DGI have the tendency to improve as we increase the embedding size. On the other
hand, GCA and SELFGNN/BGRL, stay the same or decrease. For MVGRL, it seems that it has the
tendency to improve proportionally to the embedding size. However, we were able to observe only
for 256 and 512, as it throws an out-of-memory error for larger values.

A.2.4 Pre vs. Post Augmentation

In terms of performance, both augmentation techniques give equivalent results. The only difference
is that the hyperparameters need to be tuned separately for each one. In Fig. 5 we show the final
configuration of the hyperparameters that maximize prediction accuracy on the validation set, which
are obtained using Bayesian optimization. As can be seen from the figure, they converge to different
values.

Since the main motivation for introducing the post-augmentation is efficiency, in Fig. 6 we show
the memory usage and run time (to finish an epoch) required by these variants. As anticipated, the
post-augmentation is significantly faster and has a lot less memory overhead.

A.2.5 Symmetry vs. Asymmetry

SURGEON’s architecture can easily be replaced by an asymmetric one. For this reason, we create
asymmetry just by adding a prediction head on the left network and inserting batch norm in the GNN
encoder [13, 24, 19]. We update the parameters of both the left and right networks using stochastic

8

Avg. Time (in Sec) Memory (in MB)

Reddit Yelp Reddit Yelp

0

5000

10000

15000

0

20

40

Dataset

Augmentation
Post
Pre

Figure 6: Analysis of Pre and Post
Augmentation techniques in terms of
memory usage and run time complex-
ity (time to finish an epoch)

0

25

50

75

CS DBLP Facebook Photo WikiCS
Dataset

A
cc

ur
ac

y

Architecture Asymmetric Symmetric

Figure 7: Comparison between SURGEON’s
architecture (Symmetric) and an Asymmetric
architecture

gradient descent. As shown in Fig. 7, the performance of the asymmetric architecture is slightly lower
than the symmetric one.

A.2.6 Convergence

Recent studies [26, 24] have shown that SSL-GNN methods usually require a large number of epochs
(several thousand) to achieve a performance comparable to semi-supervised methods. In Fig. 8
we show SURGEON’s convergence, and usually, 50 epochs are sufficient to achieve comparable
performance to semi-supervised methods.

A.3 Implementation Details

SURGEON is implemented using PyTorch and PyTorch Geometric libraries.

For each augmentation head, we use a simple one-layer linear head. To avoid overfitting, we use
dropout in both heads.

For the GNN encoder, we use two types of architectures, which are GCN [14] and GRAPHSAGE [10].
A full-batch GCN is used for the small datasets, and a mini-batch GNN based on GRAPHSAGE with
neighborhood sampling [10] is used for the larger ones. As stated earlier, one can substitute these

50

60

70

80

90

100 200 300 400 500
Number of Training Epochs

A
cc

ur
ac

y

Dataset
CS
DBLP
Facebook
Flickr
Photo
Reddit
WikiCS

Figure 8: Analysis of the convergence of
SURGEON

9

with any other architecture as necessary. A dropout is also added, and finally, we use a residual
connection for the GNN encoder.

We use the output of the GNN encoder as the embedding of nodes for the pre architecture, whereas
for the post architecture we use the augmented latent representations.

Although existing SSL-GNN methods [24, 19, 19, 13] require different normalization strategies,
such as Batch Norm and Layer Norm, that is not necessary for SURGEON; as a result, no such
normalization is used.

10

	Introduction
	Surgeon
	Learning Data Augmentation
	Joint Training of the Parameters

	Experiments
	Experimental Protocol
	Results

	Conclusion
	Appendix
	Dataset Description
	Ablation Study
	Loss Function
	Batch Size
	Embedding Size
	Pre vs. Post Augmentation
	Symmetry vs. Asymmetry
	Convergence

	Implementation Details

