
Towards Efficient and Effective Self-Supervised
Learning of Visual Representations

Sravanti Addepalli∗, Kaushal Santosh Bhogale∗, Priyam Dey, R.Venkatesh Babu
Video Analytics Lab, Department of Computational and Data Sciences

Indian Institute of Science, Bangalore, India

Abstract

Self-supervision has emerged as a propitious method for visual representation
learning after the recent paradigm shift from handcrafted pretext tasks to instance-
similarity based approaches. While the latter have indeed shown promising di-
rection, they require a significantly larger number of training iterations when
compared to the supervised counterparts. In this work, we explore reasons for the
slow convergence of these methods, and further propose to strengthen them using
well-posed auxiliary tasks that converge significantly faster, and are also useful for
representation learning. The proposed method utilizes the task of rotation predic-
tion to improve the efficiency of existing state-of-the-art methods. We demonstrate
significant gains in performance using the proposed method on multiple datasets.

1 Introduction

Early self-supervised training algorithms [52, 41, 20] aimed at learning representations while solving
specialized tasks that require a semantic understanding of the content to accomplish. While generative
networks such as task-specific encoder-decoder architectures [30, 53, 45], and GANs [21, 14] could
learn useful representations, they were superseded by discriminative tasks such as solving Jigsaw
puzzles [41] and rotation prediction [20], as the latter could be achieved using lower model capacities
and lesser compute. The surprisingly simple task of rotating every image by a random angle from
the set {0◦, 90◦, 180◦, 270◦}, and training the network to predict this angle was seen to outperform
other handcrafted task based methods with a similar convergence rate as supervised learning methods
[20]. Recent approaches have achieved a significant boost in performance by learning similar
representations across various augmentations of a given image [25, 22, 7, 5, 8] at a comparable
computational cost. They achieve a further boost when trained for a larger number of epochs [8],
indicating that improving their convergence can lead to valuable gains at a low computational cost.
We review the related works in greater detail in Section-A1.

In this work, we empirically show that a key reason for the slow convergence of instance-similarity
based approaches is the presence of noise in the training objective, owing to the nature of augmenta-
tions used, as shown in Fig.1 (Sec.2). We further propose to strengthen the recent state-of-the-art
instance-similarity based self-supervised learning algorithms such as BYOL [22] and SwAV [5]
using a noise-free auxiliary training objective such as rotation prediction in a multi-task framework
[12] (Sec.3). As shown in Fig.2, this leads to a similar convergence rate as RotNet [20], while
also resulting in better representations from the instance-similarity based objective. We further
study the invariances of the network to geometric transformations, and show in Section-A4.4 that in
natural images, rotation invariance hurts performance and learning covariant representations across
multiple rotated views leads to improved results. We demonstrate significant gains in performance
across CIFAR-10, CIFAR-100 [33], and ImageNet-100 [48, 11] datasets. We further demonstrate the
scalability of the proposed approach to a 1000-class dataset using a 30-epoch training schedule on
ImageNet-1k (Sec.4, A4).
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Figure 1: We demonstrate noise in the training
objectives of instance-similarity based learning
tasks. Consider the three random crops of the in-
put image (i). The two crops in (ii) are desirable,
while the crops shown in (iii) give an incorrect
signal to the network. In (iv), we show that pre-
text tasks like rotation prediction can provide a
noise-free training objective.
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Figure 2: Top-1 Accuracy (%, left plot) after self-
supervised pretraining and Linear layer supervised training
on CIFAR-10. The proposed method (BYOL+Rotation)
achieves the same accuracy as the baseline in one-third the
training time (blue dotted line). Gain in Top-1 Accuracy
(%, right plot), is the difference between accuracy of the
current epoch and epoch-50. The plots show improvements
in efficiency and effectiveness of the proposed approach.

Table 1: Eliminating False Negatives in con-
trastive learning across varying levels of super-
vision (% Labels). Elimination of noise in the
training objective leads to higher linear evalua-
tion accuracy (%) within a fixed training budget.
% Labels SimCLR [7] Ours Gain (%)

0 88.77 90.91 2.14
30 92.26 +3.49 93.94 1.68
50 92.93 +0.67 94.02 1.09
100 93.27 +0.34 94.15 0.88

Table 2: Eliminating False Positives in BYOL
[22] across varying levels of supervision (%
Good Crops). Elimination of noise in the train-
ing objective leads to higher linear evaluation
accuracy (%) within a fixed training budget.

% Good Crops BYOL [22] Ours Gain (%)

0 63.64 68.62 4.98
25 64.50+0.86 68.30 3.80
50 66.30+1.80 68.90 2.60

100 66.72+0.42 70.26 3.54

2 Motivation
In this section, we show that the slow convergence of instance-discriminative algorithms can be
attributed to a noisy training objective, and eliminating this noise can lead to improved performance.
Impact of False Negatives in SimCLR: The contrastive learning objective in SimCLR [7] (Eq.A2)
considers two augmentations of a given image as positives and the augmentations of all other images
in the batch as negatives. These negatives could belong to the same class as the anchor image, and
possibly be as similar to the anchor image as the corresponding positive, leading to a noisy training
objective. While the probability of same class negatives is higher when batch size is at least 2× higher
than the number classes, this issue can occur even otherwise, when there exist negative images that
are more similar to the anchor when compared to the positive. Khosla et al. [29] use supervision from
labels in a Supervised Contrastive (SupCon) framework to convert the same-class false negatives
to additional positives, and show an improvement over supervised learning methods. In order to
specifically study the impact of eliminating false-negatives, we perform experiments by using a
varying fraction of labels to merely avoid using the same class samples as negatives (without adding
these samples as positives), and present results on CIFAR-10 in Table-1. Using 30% labels, we
achieve a 3.49% increase in accuracy when compared to the SimCLR baseline (0% labels case).
Impact of False Positives in BYOL: Since BYOL does not use a contrastive learning objective
(Eq.A3), it is not directly impacted by noise due to false negatives. However, as shown in Fig.1(iii),
the augmentations considered may not be similar to each other, leading to false positives. Selvaraju
et al. [47] show that unsupervised saliency maps can be used for the selection of better crops, and
also as a supervisory signal in the training objective. Inspired by this, we use Grad-CAM [46] based
saliency maps from an ImageNet pre-trained network to select crops for ImageNet-100 pretraining
such that the ratio of mean saliency score of the cropped image and that of the full image is higher
than a certain threshold and present results in Table-2 (Details in Sec.A2). We observe that by using
saliency-maps for crop selection, the accuracy improves by 3.08% for a fixed training budget. While
this experiment shows the impact of reducing the false positives in the BYOL objective, it does not
completely eliminate noise in the training objective, since the saliency maps themselves are obtained
from a Deep Neural Network, and hence may not be very accurate.
The above experiments demonstrate that reduction of noise in the training objective leads to higher ac-
curacy within a fixed training budget, indicating that this can improve the efficiency and effectiveness
of instance-discriminative training approaches.
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3 Proposed Method
The key ingredients for the success of a self-supervised learning algorithm are (i) Well-posedness of
the learning task; (ii) Extent of correlation between representations that help accomplish the pretext
task, and ideal representations, whose quality is evaluated using downstream tasks. The success
of instance-similarity based approaches in achieving state-of-the-art performance on downstream
tasks indeed shows that the representations learnt using such tasks are well correlated with ideal
representations. However, these methods require to be trained on a significantly larger number
of training epochs when compared to the supervised counterparts. On the other hand, task-based
objectives such as rotation prediction score higher on the well-posedness of the learning task. In this
task, a known random rotation transformation is applied to an image, and the task of the network is to
predict the angle of rotation. Since the rotation angle is known a priori, there is very little scope for
noise in labels or in the learning objective, leading to faster training convergence. In this work, we
propose to enhance the convergence of instance-similarity based approaches using pretext-task based
objectives such as rotation prediction. The proposed approach can be used to enhance many existing
instance-discrimination based algorithms (referred to as base algorithm) as shown in Sections-4 and
A4. A schematic diagram of our proposed approach is presented in Fig.3.
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Figure 3: Schematic diagram illustrating the pro-
posed approach. A pretext task such as rotation pre-
diction is combined with base methods like BYOL
and SimCLR. For methods like BYOL and MoCo,
the derived network Mψ is a momentum-averaged
version of Mθ, and for methods like SimCLR and
SimSiam, Mθ and Mψ share the same parameters.

We term the main feature extractor to be learned
as the base encoder, and denote it as fθ. Some
of the self-supervised learning algorithms use
an additional encoder, which is derived from
the weights of the base encoder. We call this
as a derived encoder and represent it using fψ.
It is to be noted that the derived encoder may
be also be identical to the base encoder, which
represents an identity mapping between θ and
ψ. As proposed by Chen et al. [7], many of the
approaches use a learnable nonlinear transfor-
mation between the representations and the final
instance-discriminative loss. We denote this pro-
jection network and its derived network using
gθ and gφ respectively. We note that the base
algorithm may have additional layers between
the projection network and the final loss, such
as the predictor in BYOL [22] and SimSiam [8],
which are not explicitly shown in Fig.3.

An input image x is first subject to two augmentations a1 and a2 to generate xa1 and xa2 . We use
the augmentation pipeline from the respective base algorithm such as BYOL or SimCLR. These
augmented images are passed through the base encoder fθ and the derived encoder fφ respectively,
and the outputs of the projection networks gθ and gφ are used to compute the training objective
of the respective base algorithm. The augmentation xa1 is further transformed using a rotation
transformation t which is randomly sampled from the set T = {0◦, 90◦, 180◦, 270◦}. The rotated
image xa1,t is passed through the base encoder fθ and projection network gθ which are shared with
the instance-based task. We represent the overall network formed by the composition of fθ and gθ by
Mθ, and similarly the composition of fψ and gψ by Mψ . The representation Mθ(x

a1,t) is input to a
task-specific network hθ whose output is a 4-dimensional softmax vector over the outputs in the set
T . The overall training objective is as follows:

L = Lbase + λ · 1

2B

B−1∑
i=0

2∑
m=1

`CE(hθ(Mθ(x
am,tk
i ), tk)) (1)

Here tk is sampled uniformly at random for each image from the set T . Lbase represents the symmetric
loss of the base instance-similarity based algorithm used (Eq.A2, A3). λ is the weighting factor
between rotation task and the instance-similarity objective. While the RotNet algorithm [20] uses all
four rotations for every image, we consider only two in the overall symmetric loss. Therefore, when
compared to the base algorithm, the computational overhead of the proposed method is limited to
one additional forward propagation for every augmentation, which is very low when compared to
the other components of training such as data loading and backpropagation. There is no additional
overhead in backpropagation since the combined loss shown in Eq.1 is used for training.
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Table 3: Transfer Learning (Classification): Performance (%) after linear evaluation on different
datasets with a ResNet-50 backbone trained on ImageNet-1K for 30 epochs.

ImageNet CIFAR-10 CIFAR-100 Flowers Caltech Aircraft DTD Cars Food Pets SUN VOC Avg

SwAV [5] 54.90 86.22 64.18 83.53 80.91 38.78 69.79 31.65 59.41 70.73 52.48 76.33 64.08
SwAV + Ours 57.30 87.85 66.94 85.78 84.18 42.09 69.68 32.52 59.46 71.27 53.25 76.70 65.59

Table 4: CIFAR-10, CIFAR-100: Accuracy
(%) of the proposed method when compared
to baselines under two evaluation settings - K-
Nearest Neighbor (KNN) classification with
K=200 and Linear classifier training on CIFAR-
10 and CIFAR-100. The proposed method
achieves significant performance gains.

CIFAR-10 (200 epochs) CIFAR-100 (200 epochs)
Method KNN Linear KNN Linear

Rotation Pred. [20] 78.01 84.00 36.25 50.87
SimCLR [7] 86.37 88.77 55.10 62.96
SimCLR + Ours 88.69 90.91 57.09 65.40
BYOL [22] 86.56 89.30 54.37 60.67
BYOL + Ours 89.80 91.89 58.41 67.03
SwAV [5] 80.65 83.60 40.35 51.50
SwAV + Ours 85.26 87.20 50.09 58.60
SimSiam [8] 87.05 89.77 56.90 64.27
SimSiam + Ours 90.35 91.91 58.92 67.38

Table 5: ImageNet-100 and ImageNet-1k: Top-
1 and Top-5 Accuracy (%) of the proposed method
when compared to baselines under three evalua-
tion settings - Linear classifier training and Semi-
Supervised Learning with 1% and 10% labels.

Method Linear Semi-Supervised
1% labels

Semi-Supervised
10% labels

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ImageNet-100 (100 epochs pretraining)
Rotation Prediction [20] 53.86 81.26 34.72 65.70 51.18 81.38
BYOL [22] 71.02 91.78 46.60 75.50 68.00 89.80
BYOL + Ours 73.60 92.98 56.40 83.50 72.30 91.40
SimCLR [7] 72.02 91.56 57.28 83.69 71.44 91.72
SimCLR + Ours 73.24 92.28 57.80 83.84 72.52 92.10
SwAV [5] 72.20 92.96 49.38 78.41 67.56 90.78
SwAV + Ours 74.40 93.33 52.02 80.01 69.68 91.43

ImageNet-1k (30 epochs pretraining)
SwAV [5] 49.29 75.01 27.80 52.54 48.76 75.13
SwAV + Ours 52.57 77.72 28.43 53.90 49.73 76.02

4 Experiments and Results

We compare the performance of the proposed method with the respective baselines in the setting of
linear evaluation on CIFAR-10, CIFAR-100 (Table-4), ImageNet-100 and ImageNet-1k (Table-5)
datasets. We present results on CIFAR-10 and ImageNet-100 datasets with varying number of
training epochs in Fig.2 and 7 respectively using BYOL as the base approach. Across all settings, we
obtain improved efficiency and effectiveness over the respective baselines. We show transfer learning
results with 30 epochs of pretraining on Imagenet-1k (ResNet-50 architecture) in Table-3. We obtain
improved results in semi-supervised learning (Table-5) and transfer learning settings as well. We
present training details in Sec.A3, details on results in Sec.A4 and ablation experiments in Sec.A5.

Table 6: Combining BYOL with handcrafted
pretext tasks: Accuracy in (%) after linear eval-
uation, of various algorithms on ImageNet-100
dataset. Combining instance-similarity based ap-
proaches such as BYOL [22] with well-posed tasks
such as Rotation Prediction and Jigsaw puzzle solv-
ing results in a boost in performance.

Top-1 Acc (%) Top-5 Acc (%)
RotNet [20] 53.86 81.26
Jigsaw [41] 42.01 72.10
BYOL [22] 71.02 91.78
BYOL + Rotation 73.60 92.98
BYOL + Jigsaw 73.60 92.72
BYOL + Rotation + Jigsaw 74.72 92.94
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Table 7: Accuracy (%) after Linear layer
training for BYOL and the proposed method
(BYOL+Rotation) for ImageNet-100. The
proposed method achieves significant gains
over the baseline in all settings.

5 Conclusions

In this work, we investigate reasons for the slow convergence of recent instance-similarity based
methods, and propose to improve the same by jointly training them with well-posed tasks such as
rotation prediction. While instance-discriminative approaches learn better representations, hand-
crafted tasks have the advantage of faster convergence as the training objective is well defined and
there is typically no (or very less) noise in the generated pseudo-labels. The complementary nature
of the two kinds of tasks makes it suitable to achieve the gains associated with both by combining
them, as proposed. Using the proposed approach, we show significant gains in performance under
a fixed training budget, along with improvements in training efficiency. We show similar gains
in performance by combining the base algorithms with the task of Jigsaw puzzle solving as well
(Table-6). We hope that our work will revive research interest in designing specialized tasks, so that
they can be help boost the effectiveness and efficiency of state-of-the-art methods.
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Appendix

A1 Related Works

Early works for learning visual representations from unlabelled images used greedy layer-wise training proce-
dures [19, 27, 2] to find a good initialization for training fully connected architectures. As discussed in Section-1,
most of the subsequent methods can be broadly classified into the early handcrafted pretext task based methods,
and the more recent instance discrimination based methods.

A1.1 Handcrafted Pretext task based methods

Although pixel-level image generation tasks such as image reconstruction [21, 30] , colorization [52, 34, 35],
and inpainting [45, 51] were found to learn useful representations, these tasks required larger capacity models
and incurred a higher computational cost for training. Discriminative pretext tasks use pseudo-labels that are
generated automatically without the need for human annotations. This includes tasks based on spatial context of
images such as context prediction [13], image jigsaw puzzle [41] and counting visual primitives [42].

RotNet: Rotation prediction, proposed by Gidaris et al. [20], has been one of the most successful pretext tasks
for the learning of useful semantic representations. In this approach, the network is trained to predict one of
the K rotations which was used for transforming the input image xi. The authors found that K = 4 with
T = {0◦, 90◦, 180◦, 270◦} produced the best results. Every image xi is transformed using all four rotation
transformations xt1i , xt2i , xt3i and xt4i , and the network is trained to predict t1, t2, t3 and t4, which are the
rotation angles used for transforming xi. The base encoder fθ is trained by minimizing the following loss
function L:

LRotNet =
1

B

B−1∑
i=0

1

K

K−1∑
k=0

`CE(Mθ(x
tk
i ), tk) (A1)

Here, Mθ represents the network that takes as input rotated images xtki , and outputs the softmax predictions
over the four possible rotation angles. Due to its simplicity and effectiveness, the rotation task has been used to
improve the training of Generative Adversarial Networks (GANs) [21, 6] as well.

Doersch and Zisserman [12] investigated methods for combining several handcrafted pretext tasks in a multi-task
learning framework for learning better representations. Contrary to a general multi-task learning setting, in this
work we explicitly consider speeding up instance similarity based tasks such as BYOL [22] and SwAV [5] using
handcrafted pretext tasks. We show using controlled experiments that the training objective of instance-similarity
based tasks is noisy and the well-defined objective of rotation prediction helps achieve a boost in performance.

A1.2 Instance Discriminative approaches

Recent approaches aim to learn similar representations for different augmentations of the same image, while
generating diverse representations across different images. Several works achieve this using contrastive learning
approaches [43, 26, 7, 25, 39], where multiple augmentations of a given image are considered as positives, and
augmentations of other images are considered as negatives. PIRL [39] and MoCo [25] maintain a queue for
sampling a large number of negatives.

SimCLR: The work by Chen et al. [7] presents a Simple Framework for Contrastive Learning of Visual
Representations (SimCLR), which utilizes existing architectures such as ResNet [24], and avoids the need for
specialized architectures and memory banks. SimCLR proposed the use of multiple data augmentations, and a
learnable nonlinear transformation between representations and the contrastive loss to improve the effectiveness
of contrastive learning. The authors find the following augmentations to be best suited for the contrastive learning
task - random crop and resize, random color jitter and random Gaussian blur. These augmentations are applied
serially to every image xi to generate two independent augmentations xa1i and xa2i , which are considered as
positives in the contrastive learning task. The 2(B − 1) augmentations of all other images in a batch of size
B are considered as negatives. The network is trained by minimizing the normalized temperature-scaled cross
entropy loss (NT-Xent) loss with temperature T as shown in Eq.(A2). The cosine similarity between two vectors
a and b is denoted as sim(a, b). The overall network formed by the composition of the base encoder fθ and the
projection network gθ is represented by Mθ .

LSimCLR = − 1

2B

B−1∑
i=0

2∑
m=1

log
exp(sim(Mθ(x

a1
i ),Mθ(x

a2
i ))/T )∑B−1

j=0

∑2
l=1 1[j 6=i] exp(sim(Mθ(x

am
i ),Mθ(x

al
j ))/T )

(A2)



BYOL: While prior approaches relied on the use of negatives for training, Grill et al. [22] proposed Bootstrap
Your Own Latent (BYOL), which could achieve state-of-the-art performance without the use of negatives. The
two augmentations xa1i and xa2i are passed through two different networks - the base network Mθ , and the
derived network Mψ respectively. The weights of the base network are updated using back-propagation, while
the weights of the derived network are obtained by computing a slow exponential moving average over the
weights of the base network. The base network is trained such that the representation of xa1i at its output can be
used to predict the representation of the xa2i at the output of the derived network, using a predictor network Pθ .
The symmetric loss that is used for training the base network is shown below:

LBYOL = − 1

2B

B−1∑
i=0

{ sim(Pθ(Mθ(x
a1
i )),Mψ(x

a2
i )) + sim(Pθ(Mθ(x

a2
i )),Mψ(x

a1
i )) } (A3)

SimSiam: Chen and He [8] show that it is indeed possible to avoid a collapsed representation even without the
momentum encoder using Simple Siamese (SimSiam) networks, and that the stop-gradient operation is crucial
for achieving this.

Clustering based methods, SwAV: Clustering-based self-supervised approaches use pseudo-labels from the
clustering algorithm to learn representations. DeepCluster [4] alternates between using k-means clustering for
producing pseudo-labels, and training the network to predict the same. Asano et al.[1] show that degenerate
solutions exist in the DeepCluster [4] algorithm. To address this, they cast the pseudo-label assignment problem
as an instance of the optimal transport problem and solve it efficiently using a fast variant of the Sinkhorn-Knopp
algorithm [10]. SwAV [5] also uses the Sinkhorn-Knoop algorithm for clustering the data while simultaneously
enforcing consistency between cluster assignments by Swapping Assignments between Views (SwAV), and
using them as targets for training.

A2 Eliminating false positives in self-supervised learning

As shown in Fig.1(iii), two random augmentations of a given image may not always be similar to each other.
The use of very small crops increases the likelihood of obtaining augmentations which may be unrelated to
each other. This leads to false positives in instance-similarity based learning approaches. In Table-2, we use
Grad-CAM [46] based saliency maps to select crops such that mean saliency score of the cropped image is
greater than that of the full image. We describe this method in more detail below.

Mean-saliency based cropping: We denote the saliency map of an image using G(x), which is a probability
map indicating the importance of each pixel in the image. In order to select rectangular crops having high
saliency score, we first calculate the mean probability score P (x) for an image x of dimension W × H as
follows:

P (x) =
1

W ·H

W∑
i=0

H∑
j=0

Gi,j(x) (A4)

For selecting a rectangular crop from the image, we randomly sample the top left corner coordinates (l,m),
width w, and height h from the valid range. These values can be used to obtain a rectangular crop xa1 . We
formulate the saliency score of the crop xa1 as follows:

P (xa1) =
1

w · h

l+w∑
i=l

m+h∑
j=m

Gi,j(x) (A5)

The sampled crop is accepted only if P (xa1) > P (x). We repeatedly sample until a valid crop is found, and
restrict to a maximum of 10 tries. If no valid crop is found, we use a random crop. We observe that 10 tries are
sufficient to find valid crops in most cases and random cropping is used for very few images.

Computational Budget: As shown in Table-2, with 50 epochs of training, the accuracy on BYOL baseline is
63.64%, which increases to 66.72% with the use of supervised saliency maps. However, this method assumes
the availability of a network which is pre-trained on a relevant dataset, which may not always hold true. Hence,
the computational budget for training this reference network needs to be considered too. We use fully supervised
network trained for 90 epochs as the reference model for generation of saliency maps. Therefore, the total budget
for the BYOL baseline is 140 epochs (50 + 90). As shown in Table-5, the accuracy obtained by training the
BYOL baselines for 100 epochs is 71.02% which is 4.3% higher than the model that is trained for 50 epochs
using saliency maps, with an effective training budget of 140 epochs. This shows that while the use of saliency
maps from a pre-trained network helps improve accuracy, it is not a practical option in cases where a model that
is pre-trained on a related dataset is not available a priori.
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A3 Details on Training hyperparameters

We consider the following baselines for our experiments: SimCLR [7], BYOL [22], SimSiam [8] and SwAV [5].
Since these papers primarily demonstrate results on the ImageNet dataset, using larger architectures and longer
training schedules, we perform extensive hyperparameter search to obtain strong results for the baselines on the
datasets considered. We use the ResNet-18 [24] architecture for all our experiments, unless specified otherwise.
The dimension of features before the last fully-connected classification layer is 512, which is smaller than that
of ResNet-50, where the dimension is 2048. We fix the batch size to be 512 in all our experiments. We discuss
details on hyperparameter tuning for obtaining strong baselines in Section-A3.1, and describe the same for the
proposed method in Section-A3.2.

A3.1 Details on the Baseline Implementation

SimCLR: For the SimCLR [7] baseline on CIFAR-10 and CIFAR-100, we perform a hyperparameter search
for the learning rate, weight decay and the temperature used in the loss. We tune the learning rate in the range
of 0.1 to 1 with a step size of 0.1, and the temperature in the range of 0.1 to 0.5 with a step size of 0.1. For
weight decay we search over the range { 5× 10−4, 1× 10−4, 1× 10−5, 1× 10−6 }. Finally, we use a learning
rate of 0.5, weight decay of 1× 10−4 and a temperature of 0.2 for all our experiments. Following the official
implementation [7], we use cosine learning rate schedule with a warm-up of 10 epochs. For the projection head,
we use a 2 layer MLP with the hidden layer consisting of 512 nodes. The output is a 128-dimensional vector.
We use batch normalization layers [28] in the projection head. For ImageNet-100, we use the implementation
and tuned hyperparameters from the repository solo-learn 2.

BYOL: For BYOL [22] baselines on CIFAR-10 and CIFAR-100, we perform a search for the learning rate and
weight decay in the same manner as described in the paragraph above. Additionally we tune the momentum
τ of the target network in BYOL [22] from the values { 0.8, 0.85, 0.9, 0.95, 0.99, 0.995, 0.999 }. Finally, we
use a learning rate of 0.8 and weight decay of 1× 10−4 for CIFAR-10 and CIFAR-100. We tune the learning
rate for ImageNet-100 in the range 0.4 to 0.7 with a step size of 0.1. We finally use a learning rate of 0.6 and a
weight decay of 1× 10−4 for ImageNet-100. We use τ of 0.95, 0.85 and 0.95 for CIFAR-10, CIFAR-100 and
ImageNet-100 respectively.

SimSiam: For the SimSiam [8] baselines, we use the implementation from the repository 3, and perform a
hyperparameter search for the learning rate, weight decay and the number of projection layers used in the loss.
We tune the learning rate in the range of 0.03 to 0.1 with a step size of 0.01, and additionally try 0.2 as well.
For weight decay we search over the range { 6× 10−4, 5× 10−4, 4× 10−4, 3× 10−4, 1× 10−4, 1× 10−5,
1× 10−6 }. For the number of projection layers, we consider two values, 2 and 3. Finally, for CIFAR10, we use
a learning rate of 0.07, weight decay of 4× 10−4 and number of projection layers as 2. For CIFAR100, we use
a learning rate of 0.05, weight decay of 5× 10−4 and number of projection layers as 3. Following the official
implementation [8], we use the cosine learning rate schedule with a warm-up of 10 epochs. For the projection
head, the hidden layer is set to 2048 nodes and output is a 2048-dimensional vector. For the prediction head,
the hidden layer has 512 nodes and the output is again a 2048-dimensional vector. We use batch normalization
layers in the projection and prediction heads similar to the official implementation [8].

SwAV: We use the code and hyperparameters from the official implementation [5]. For CIFAR-10, we search
for the optimal number of prototypes over the values {10, 30, 50, 70, 90, 100, 120, 150}, ε over {0.01, 0.03}
and queue over {0, 38, 384}. we finally set the number of prototypes to 100 without using a queue, and set ε to
0.03. Since CIFAR-10 images are small in size (32x32), we do not use the multi-crop strategy. We use the same
settings for CIFAR-100 as well. For ImageNet-100, we scale the default number of prototypes from the official
code [5] by a factor of 10 to 300, based on the scaling of number to classes from 1000 to 100. We use search for
queue length in the range {0, 384, 1920, 3840} and set it to 384 finally. For the ImageNet-1k runs on ResNet-18,
we do not make any changes with respect to the official implementation, whereas for the runs on ResNet-50, we
skip the use of multi-crop augmentations to speed up the training.

A3.2 Details on the Proposed Implementation

We use the same hyperparameters as the respective baselines for the implementation of the proposed method,
and additionally tune only the value of λ (Eq.1), which is the weighting factor used for the rotation loss. We
use a 2 layer MLP for the rotation prediction task and use batch normalization for the hidden layer. For finding
the best setting of λ, we tune for 1/(2 · λ) in the range 1 to 10 with step size of 1, and for 2 · λ in the range
0 to 1 with a step size of 0.1. In order to minimize computational overheads, we use the same value of λ as
ImageNet-100 on ImageNet-1k as well.

2https://github.com/vturrisi/solo-learn
3https://github.com/PatrickHua/SimSiam
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For SimCLR, we use 2 · λ as 1 for CIFAR-10 and CIFAR-100, and 0.1 for ImageNet-100. For BYOL, we use
1/(2 · λ) as 5 for CIFAR-10 and CIFAR-100, and 6 for ImageNet-100. For SimSiam, we set the value of 2 · λ
to 0.1 for CIFAR-10 and 0.2 for CIFAR-100. For SwAV, we set the value of 2 · λ to 0.5 for CIFAR-10 and
CIFAR-100, and 0.1 for ImageNet-100 and ImageNet-1k.

A3.3 Training Details of Linear Evaluation

The linear evaluation stage consists of training a linear classification layer on top of the frozen backbone network.
We do not update the batch statistics in this stage. For linear evaluation on CIFAR-10 and CIFAR-100, we do
not apply any spatial augmentations to the images during training. We use the SGD optimizer with momentum
of 0.9. We train for 100 epochs with a batch size of 512. We use a learning rate of 1.0 which is the best setting
chosen from the range { 0.1, 0.5, 1.0, 1.5, 2.0 }. The same settings are used for ImageNet-100 BYOL linear
evaluation as well.

For SimSiam linear evaluation, we apply Random cropping and horizontal flipping. We use the SGD optimizer
with momentum over 100 epochs using a batch size of 512, learning rate of 30.0 and momentum of 0.9, as
recommended by the authors [8]. Cosine scheduler with decay is employed without any warmup for the training.

On ImageNet-100, we use the settings from the repository solo-learn 4 for the linear evaluation of SimCLR [7].
For linear evaluation of SwAV models on ImageNet-100 and ImageNet-1k, we use the settings from their official
repository [5], and use 30 epochs of training on ImageNet-1k.

We use the same hyperparameters for the linear evaluation of the proposed approach and the respective baselines.

A3.4 Training Details of Semi-supervised learning

We follow the semi-supervised training settings from [5, 36] for both 1% and 10% labels. Specifically, we
train for 20 epochs with a batch size of 256. For the setting of 1% labels, we use a learning rate of 0.02 for
the backbone and 5.0 for the linear layer. For the setting of 10% labels, we use a learning rate of 0.01 for the
backbone and 0.2 for the linear layer. We decay the learning rates by a factor of 0.2 at epochs 12 and 16 in both
the settings. We do not use weight decay during the training.

A4 Details on Experiments

In this section, we first describe our experimental settings (Sec.A4.1) and details on datasets used for evaluation
(Sec.A4.2), following which we present an empirical analysis to highlight the importance of the auxiliary
task towards improving the efficiency and effectiveness of the base learning algorithm (Sec.A4.3). We further
compare the properties of the learned representations using different training methods and show that learning
representations that are covariant to rotation also aids in boosting performance (Sec.A4.4). We compare
the results of the proposed method with the state-of-the-art approaches in Sec.A4.5 and show results in a
transfer learning setup in Sec.A4.6. We finally show the generality of the proposed method by integrating
instance-similarity based methods with other auxiliary tasks such as Jigsaw prediction in Sec.A4.7.

A4.1 Experimental Setup

We run our experiments either on a single 32GB V100 GPU, or across two such GPUs unless specified otherwise.
We train all our models on ResNet-18 [23] architecture unless specified otherwise. Our primary evaluations
are run for 200 epochs on CIFAR-10 and CIFAR-100 datasets [33], and 100 epochs on ImageNet-100 dataset
[48, 11]. We show additional evaluations across varying number of training epochs in Sec.A4.5. We use the
respective base algorithm or the proposed approach to learn the base encoder fθ , and evaluate its effectiveness
by training a linear classifier over this, as is common in prior works [7, 8, 22, 5]. In this step, the weights of
the base encoder are frozen. We additionally report results in a semi-supervised and transfer learning setting as
well. We use the same training hyperparameters as the respective baselines for pre-training, linear evaluation,
semi-supervised learning and transfer learning. In the pretraining step, we additionally tune only the value of λ
(Eq.1), which is the weighting factor used for the rotation loss.

A4.2 Details on Datasets

We present our analysis and results across the following datasets: CIFAR-10, CIFAR-100 [33] and ImageNet-100
[48], which is a 100-class subset of ImageNet [11]. We do not present our main results on the full ImageNet
dataset due to computational limitations. However, we show the scalability of our approach to ImageNet on a
short training schedule of 30-epochs. Details of these datasets are presented below:

4https://github.com/vturrisi/solo-learn
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Table A1: Task Performance (%): Evaluation
of representations learned using various algo-
rithms on the task of rotation prediction and
instance-discrimination.

Method Linear Rotation Acc Contrastive Acc
f(.) g(f(.)) f(.) g(f(.))

Supervised 94.03 80.54 - 46.36 -
BYOL 89.30 73.40 58.32 78.53 78.82
Rotation 84.00 93.69 93.46 31.61 1.52
BYOL+Rotation 91.89 93.73 93.54 72.85 67.81

Table A2: Evaluation of BYOL + Rotation
with varying amounts of noise in the rotation
task labels. Higher rotation prediction accuracy
correlates with higher linear evaluation accuracy.

Rotation Linear Rotation Acc Contrastive Acc
Noise f(.) g(f(.) f(.) g(f(.)

30% 89.93 91.88 91.78 73.42 64.25
50% 90.28 89.95 85.82 78.18 77.39
70% 89.75 80.49 67.26 78.55 77.31
80% 89.18 77.43 63.53 77.26 76.92

CIFAR-10: CIFAR-10 [33] is a 10 class dataset comprising of 50, 000 images in the training set and 10, 000
images in the test set. The dataset consists of RGB images of dimension 32× 32. The images in the train and
test sets are equally distributed across all classes.
CIFAR-100: CIFAR-100 [33] dataset consists of 50, 000 images in the training set and 10, 000 images in the
test set, equally distributed across 100 classes. The dimensions and number of channels of images in CIFAR-100
is the same as CIFAR-10.
ImageNet: ImageNet [11] is a 1000-class dataset consisting of around 1.2 million images in the training set
and 50, 000 images in the validation set. We consider the validation set as the test set, since the true test set is
held private. The dataset consists of RGB images of dimension 224× 224.
ImageNet-100: ImageNet-100 is a 100-class subset of the ImageNet dataset. We consider the same 100 class
subset that was used by Tian et al. [48].

A4.3 Robustness to Noise in the Training objective

As discussed in Section-2, instance-similarity based tasks such as SimCLR [7] and BYOL [22] suffer from
noise in the training objective, and eliminating this noise can lead to significant performance gains in a fixed
training budget. We additionally report results of the proposed approach integrated with SimCLR and BYOL
in Tables-1 and 2 respectively, and obtain gains over the base approach across varying settings of supervision
levels. However, as can be seen from the column Gain (%), the gains using the proposed approach reduce with
increasing levels of supervision. This is aligned with our hypothesis that the rotation task helps in overcoming
the impact of noise in the base instance-similarity task, and therefore, when additional supervision already
achieves this objective, gains using the proposed approach are lower.

Label Noise in a Supervised Learning setting: We consider the task of supervised learning using the super-
vised contrastive (SupCon) learning objective proposed by Khosla et al. [29]. The training objective is similar to
that of SimCLR [7] with the exception that same-class negatives are treated as positives. The authors demonstrate
that this method outperforms standard supervised training as well. We choose this training objective as this is
similar to the instance-similarity based tasks we consider in this paper, while also having significantly lesser
noise due to the elimination of false negatives in training. As shown in Fig.A3a, even in this setting, the proposed
method achieves 0.68% improvement, achieving a new state-of-the-art in supervised learning. In order to
highlight the impact of noise in training, we run a controlled set of experiments by adding a fixed amount of label
noise in each run. The plot in Fig. A3a shows the trend in accuracy of the SupCon algorithm with increasing
label noise. The proposed method achieves a significant boost over the SupCon baseline consistently across
different noise levels. Further, as the amount of noise in training increases, we achieve higher gains using the
proposed approach, indicating that the rotation task is indeed helping overcome noise in the training objective.

We also consider a set of experiments where an equal amount of label noise is added to the SupCon training
objective and to the rotation prediction task. We note that in majority of the runs (excluding the case of noise
above 70%), the accuracy is very similar to the SupCon baseline with the same amount of noise. This indicates
that the knowledge of true labels in handcrafted tasks such as rotation prediction is the key factor that contributes
to the improvement achieved using the proposed approach.

We perform the experiments of adding label noise to the rotation prediction task when combined with BYOL
and SimCLR as well. As shown in Fig.A3b we find that the gains with the rotation prediction task drops
considerably over 0 − 20% label noise, indicating that a similar amount of noise (∼ 20%) is present in the
BYOL/ SimCLR training objectives as well. Further, addition of rotation prediction task helps marginally
(0.47− 1.38%) even with higher amount of noise (30− 60%) in rotation annotations. This indicates that, while
the rotation prediction primarily helps by providing a noise-free training objective, it aids the main task in other
ways too. We investigate this in the following section.
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A4.4 Learning rotation-covariant representations

The task of enforcing similarity across various augmentations of a given image yields representations that are
invariant to such transformations. In sharp contrast, the representations learned by humans are covariant with
respect to factors such as rotation, color and scale, although we are able to still correlate multiple transformations
of the same object very well. This hints at the fact that learning covariant representations could help the accuracy
of downstream tasks such as object detection and classification.

In Table-A1, we compare the rotation sensitivity and contrastive task accuracy of representations at the output
of the base encoder fθ , and the projection network gθ . We follow the process described by Chen et al. [7] to
obtain these results. We freeze the network till the respective layer (fθ or gθ) and train a rotation task classifier
over this using a 2-layer MLP head. We measure the rotation task accuracy, which serves as an indication of
the amount of rotation sensitivity in the base network. We further compute the contrastive task accuracy on the
representations learned, by checking whether the two augmentations of a given image are more similar to each
other when compared to augmentations of other images in the same batch.

Interestingly, a fully supervised network is more sensitive to rotation (80.54%) when compared to the represen-
tations learned using BYOL (73.4%). Chen et al. [7] also show that rotation augmentation hurts performance of
SimCLR. These observations indicate that invariance to rotation hurts performance, and reducing this lead to
better representations. While RotNet has higher accuracy on the rotation task, it does significantly worse on the
instance discrimination task, leading to sub-optimal performance compared to BYOL. In the proposed method,
we achieve better rotation task accuracy with a small drop in the contrastive task accuracy when compared to
BYOL. This also results in an overall higher performance after Linear evaluation.

We also investigate the rotation invariance for the experiments in Sec.A4.3 with BYOL as the base method,
where we add noise to the rotation task in the proposed approach. We find that as the amount of noise increases
in the rotation task, the amount of rotation invariance increases, leading to a drop in accuracy. Even with 50%
noise in the rotation task, we achieve 16.55% boost in rotation performance, leading to 0.98% improvement in
the accuracy after linear evaluation. Since the BYOL learning task possibly contains lesser noise compared to
this, the gain in performance can be justified by the fact that rotation-covariant representations lead to improved
performance on natural image datasets.

A4.5 Comparison with state-of-the-art

We compare the performance of the proposed method with the respective baselines in the setting of linear
evaluation on CIFAR-10, CIFAR-100 (Table-4), ImageNet-100 and ImageNet-1k (Table-5) datasets.

We perform extensive hyperparameter search to obtain reliable results on the baseline methods for CIFAR-10
and CIFAR-100, since most existing works report the optimal settings for ImageNet-1k training alone. As
shown in Table-4, although the performance of Rotation prediction [20] itself is significantly worse that other
methods, we obtain gains of 2.14%, 2.59%, 3.6% and 2.14% on CIFAR-10 and 2.44%, 6.4%, 7.1% and 3.11%
on CIFAR-100 when using the proposed method with SimCLR [7], BYOL [22], SwAV [5] and SimSiam [8]
respectively. We achieve the best results by combining with BYOL and SimSiam.

We present results on CIFAR-10 dataset with varying number of training epochs in Fig.2 using BYOL as the
base approach. Across all settings, we obtain improved results over the BYOL baseline. The proposed method
achieves the same accuracy as the baseline in one-third the training time (shown using blue dotted line) as shown
in Fig.2. We show the difference in accuracy with respect to accuracy obtained with 50 epochs of training in
Fig.2, to clearly visualize the convergence rate of different methods. It can be seen that the proposed method
has a similar convergence trend as the Rotation task, while outperforming BYOL in terms of Top-1 Accuracy,
highlighting that integrating these methods indeed combines the benefits of both methods.

We present results on ImageNet-100 dataset in Table-5. To limit the computational cost on our ImageNet-100 and
ImageNet-1k runs, we either use the tuned hyperparameters from the official repository, or follow the settings
from other popular repositories that report competent results. Due to the unavailability of tuned hyperparameters
on this dataset for SimSiam, we skip reporting results of this method on ImageNet-100. We achieve gains of
2.58%, 1.22% and 2.2% on BYOL [22], SimCLR [7] and SwAV [5] respectively in Top-1 accuracy. We obtain
the best results by integrating the proposed method with SwAV, and hence report ImageNet-1k results on the
same method, in order to demonstrate the scalability of the proposed method to a large-scale dataset. We restrict
our runs to 30-epochs of training due to computational limitations. Using the proposed approach, we obtain a
boost of 3.28% in Top-1 accuracy over the SwAV baseline.

We present results on ImageNet-100 dataset with varying number of training epochs in Fig.7. Using the proposed
method, we achieve gains across all settings with respect to the number of training epochs.

We obtain improved results over the base methods in semi-supervised learning (Table-5) and transfer learning
settings as well.
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Table A3: Transfer Learning (Object De-
tection): Performance (AP, AP50 and AP75)
on Pascal VOC [16] dataset for the task of Ob-
ject Detection using Faster RCNN [17] FPN
[37] with a ResNet-50 backbone that is pre-
trained using SwAV [5] and the proposed ap-
proach. Pascal VOC07+12 trainval dataset
is used for training and VOC07 test is used
for evaluation. We consider two settings for
evaluation: first with the ResNet-50 backbone
being frozen, and second with the backbone
being updated during training (Finetune).

Method VOC (Frozen) VOC (Finetune)
AP AP50 AP75 AP AP50 AP75

SwAV [5] 44.10 74.54 45.00 43.80 74.46 45.07
SwAV + Ours 45.12 75.37 46.67 45.19 75.17 46.67
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Table A4: The plots demonstrate the impact of label
noise in different training objectives on CIFAR-10
dataset. The proposed method (+ Rotation) results
in higher performance boost when the amount of
label noise in the base method is larger. Addition of
label noise to the rotation task reduces the gain in
performance.

A4.6 Transfer Learning

In Table-5, we report results on the ImageNet-1k dataset with 30-epoch training on the ResNet-18 architecture,
using SwAV [5] as the baseline approach. We use the same hyperparameters as the official implementation
for this. In this section, we report results using a ResNet-50 architecture with a 30-epoch training schedule.
We perform the pretraining across 4 Nvidia Tesla V100 GPUs. We do not use multi-crop strategy in order to
reduce the computational overheads. For all the ImageNet-1k runs, we do not perform additional hyperparameter
tuning for the proposed approach, and use the same value of λ that was best in the SwAV ImageNet-100 runs
(2 · λ = 0.1). Using the linear evaluation training code and hyperparameters from the official SwAV repository
for 30 epochs on the ImageNet-1k dataset, we achieve 54.9% accuracy using the SwAV baseline, and 57.3%
accuracy using the proposed method, resulting in a gain of 2.4% (Table-3). This shows that the proposed
approach generalizes well to large-scale datasets and larger model capacities as well.

Classification: We evaluate the generalization of the learned representations to other datasets by training a linear
classifier on the pretrained backbone after freezing the weights of the backbone, as reported by Caron et al. [5].
We report transfer learning results on CIFAR-10 [33], CIFAR-100 [33], Oxford 102 Flowers [40], Caltech-101
[18], FGVC Aircraft [38], DTD [9], Stanford Cars [32], Food-101 [3], Oxford-IIIT Pets [44], SUN397 [50]
and Pascal VOC2007 [16] datasets, as is common in literature [31, 7, 15]. We use the code, hyperparameter
tuning strategy and validation splits from the official repository of Ericsson et al. [15] for obtaining results on
the SwAV baseline. For the evaluation of the proposed method, we use the best hyperparameters obtained for
baselines, in order to highlight the gains obtained using the proposed approach more clearly. We achieve better
performance across most of the datasets, and similar performance as the baseline on the DTD dataset [9]. This is
possibly because the DTD dataset is composed of textures only, and the images are rotation invariant. Therefore,
learning representations that are covariant to rotation does not help in this case. Overall, we obtain an average
improvement of 1.51% across all datasets.

Object Detection: We evaluate the generalization of the learned representations to the task of Object Detection
on the Pascal VOC dataset [16] using Faster RCNN [17] with Feature Pyramid Network [37] as the backbone.
Pascal VOC07+12 trainval dataset is used for training and VOC07 test is used for evaluation. We consider
two settings for evaluation: first with the ResNet-50 backbone being frozen, and second with the backbone
being updated during training (Finetune). The training is done using the detectron2 framework [49] and their
hyperparameters, as used by Ericsson et al. [15]. As shown in Table-A3, we obtain consistent gains across the
metrics AP, AP50 and AP75 in both evaluation settings.

A4.7 Integration with other tasks

In this work, we empirically show that combining instance-discriminative tasks with well-posed handcrafted
pretext tasks such as Rotation prediction [20] can indeed lead to more effective and efficient learning of visual
representations. While we choose the Rotation prediction task due to its simplicity in implementation, and
applicability to low resolution images (such as CIFAR-10), it is indeed possible to achieve gains by using other
well-posed tasks as well. We report results on the ImageNet-100 [48] dataset by combining the base BYOL [22]
algorithm individually with Rotation prediction [20], Jigsaw puzzle solving [41] and both in Table-6. Although
the Jigsaw puzzle solving task is sub-optimal when compared to the Rotation prediction task, we achieve similar
gains in performance when these tasks are combined with BYOL. We obtain the best gains (3.7%) when we
combine both tasks with BYOL. This shows that the analysis on well-defined tasks being able to aid the learning
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Table A5: Rotation Angles: Ablation exper-
iments to show the impact of the rotation set
(T ) used in the proposed approach. K-Nearest
Neighbor (KNN) classification accuracy (%)
with K=200 and Linear evaluation accuracy (%)
on the CIFAR-100 dataset are reported for the
baseline (BYOL [22]) and variations in the pro-
posed approach (BYOL + rotation).

Rotation Set (T ) |T | KNN Linear

φ (BYOL [22]) 0 54.37 60.67
{0◦, 180◦} 2 58.03 66.21
{90◦, 270◦} 2 53.86 62.96
{0◦, 90◦} 2 56.41 65.24
{0◦, 270◦} 2 56.29 65.04
{0◦, 90◦, 180◦, 270◦} 4 58.41 67.03
{45◦, 135◦, 225◦, 315◦} 4 57.60 65.50
{0◦, 45◦, ..., 270◦ 315◦} 8 57.54 67.25
{0◦, 30◦, ..., 300◦ 330◦} 12 55.43 63.61

Table A6: Effect of number of layers shared
with the Rotation Task: Ablation experiments
to show the impact of number of layers shared
with the rotation task in the proposed approach.
K-Nearest Neighbor (KNN) classification accu-
racy (%) with K=200 and Linear evaluation accu-
racy (%) on the CIFAR-100 dataset are reported
for the baseline (BYOL [22]) and variations in
the proposed approach (BYOL + rotation).

Layers shared with Rotation Task KNN Linear

None (BYOL [22] baseline) 54.37 60.67
First Convolutional layer (fθ) 50.36 52.50

+ Block - 1 (fθ) 50.98 52.84
+ Block - 2 (fθ) 51.75 54.85
+ Block - 3 (fθ) 52.77 58.31
+ Block - 4 (fθ) 58.29 66.06
+ Projection network (gθ) 58.41 67.03

of instance-discriminative tasks that are noisy is indeed generic, and not specific to the Rotation prediction task
alone.

A5 Ablation Experiments

In this section, we present additional experiments and results to highlight the significance of various aspects of
the proposed method.

A5.1 Impact of Variation in Rotation Angles

In the proposed method, we transform every input image using a rotation transformation t(.) which is randomly
sampled from the set T = {0◦, 90◦, 180◦, 270◦}. We present results by varying the number of rotation angles
in the set T with BYOL [22] as the base approach in Table-A5. While the use of 8 rotation angles results in the
best results, we use 4 rotation angles (which results in marginally lower accuracy after linear evaluation) due to
the simplicity of implementation, since rotation by multiples of 90◦ does not require additional transformations
such as cropping and resizing. The use of two rotation angles with T = {0◦, 180◦} leads to a drop of 0.82%
in linear evaluation accuracy when compared to the proposed method of using 4 rotation angles. However,
this setting is still 5.54% better than the BYOL baseline. Therefore, the surprisingly simple task of predicting
whether an image is in the correct orientation, or turned upside down is sufficient to boost the performance
of the baseline method significantly. In the two-angle prediction task, excluding the 0◦ rotation angle with
T = {90◦, 270◦} leads to a significant drop of 3.25% when compared to using T = {0◦, 180◦}. We further
note that using rotation transformations that are uniformly spaced (T = {0◦, 180◦}) leads to better performance
when compared to the use of T = {0◦, 90◦} or T = {0◦, 270◦}.

These experiments show that the level of difficulty of the auxiliary task plays a crucial role in the representations
learned. The task should neither be too difficult (12 rotation angles), nor should it be too easy (2 rotation angles).
Moreover, since the test images would have 0◦ rotation angle, it helps to include this as one of the classes in T .

A5.2 Impact of Number of Shared Layers across Tasks

In the proposed approach, we share the base encoder fθ and the Projection network gθ between the instance-
similarity task and the rotation task. We perform experiments to study the impact of varying the number of
shared layers between the two tasks. The results of these experiments on the CIFAR-100 dataset with BYOL
[22] as the base method are presented in Table A6. The ResNet-18 architecture consists of a convolutional
layer followed by 4 residual blocks. As an example, for the case where only Block-1 is shared between the two
tasks, we replicate the remaining part of fθ and gθ separately for the the rotation task. Thus in this case, the
rotation task only impacts Block-1 of the final base encoder fθ . As shown in Table A6, increasing the number of
shared blocks results in better performance. In fact, sharing only the first few layers leads to a degradation in
performance when compared to the BYOL baseline. This indicates that the rotation task indeed helps improve
the convergence of the overall network, and is not merely helping with learning better filters in the initial layers,
as was the case in RotNet [20] training.
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Table A7: Exploring Different Loss Formulations for the Rotation Task: Ablation experiments
to show the impact of different loss formulations on the rotation task. K-Nearest Neighbor (KNN)
classification accuracy (%) with K=200 and Linear evaluation accuracy (%) on the CIFAR-10 dataset
are reported. We additionally report the Rotation Task Accuracy (%) obtained by freezing the base
encoder fθ and training a 2-layer MLP for the rotation classification task.

KNN Linear Rotation Acc (fθ)

BYOL Baseline [22] 86.56 89.30 73.40
Ours (Classification with CE Loss) 89.80 91.89 93.73
Classification with SupCon [29] Loss 88.05 90.19 81.86
Minimizing cosine similarity between Rotation Augmentations 86.84 88.95 77.27
BYOL + Rotation Augmentation 74.32 79.70 66.61
Ours (BYOL + Rotation) + Rotation Augmentation 84.49 87.75 94.24

Table A8: Robustness to Image Augmentations: Ablation experiments to show the impact of
color jitter augmentation on the baseline (BYOL [22]) and proposed method (BYOL + Rotation).
K-Nearest Neighbor (KNN) classification accuracy (%) with K=200 and Linear evaluation accuracy
(%) on the CIFAR-10 dataset are reported. The proposed method is significantly more robust to the
absence of color jitter augmentation.

KNN Linear

BYOL [22] 86.56 89.30
BYOL (without Color Jitter) 82.21−4.35 85.90 −3.40
BYOL + Rotation 89.80 91.89
BYOL + Rotation (without Color Jitter) 88.52−1.28 91.28 −0.61

A5.3 Robustness to Image Augmentations

BYOL [22] is known to be more robust to image augmentations when compared to contrastive learning methods
such as SimCLR [7]. The authors claim that although color histograms are sufficient for the instance-similarity
task, BYOL is still able to learn additional semantic features for the image even without color jitter. We compare
the impact of removing the color jitter augmentation on the baseline (BYOL) and the proposed approach (BYOL
+ Rotation) on CIFAR-10 dataset in Table-A8. We observe that addition of rotation task boosts the robustness to
such augmentations even further. The absence of color jitter leads to a drop of 3.4% in linear evaluation accuracy
of BYOL, whereas the drop in accuracy for the proposed method without color jitter is only 0.61%, which is
significantly lower. This makes the proposed method suitable for fine-grained image classification tasks as well,
where the network needs to rely on color information for achieving good performance.

A5.4 Exploring Different Loss Formulations for the Rotation Task

The proposed approach combines Cross-Entropy (CE) loss for the rotation task with various instance-similarity
based tasks as shown in Eq.1. We explore the use of different loss formulations for the rotation task with BYOL
[22] as the base method on the CIFAR-10 dataset in Table-A7. We first replace the CE loss for rotation with
SupCon [29] loss, where all images with a similar rotation angle are treated as positives, while the remaining
images in the batch are treated as negatives. This results in a significant drop of 1.7% in the Linear evaluation
accuracy. We observe a larger drop of 2.94% when the CE loss is replaced with cosine similarity between two
unique rotation augmentations sampled from the transformation set T = {0◦, 90◦, 180◦, 270◦}. While the three
approaches of minimizing CE loss, SupCon loss and cosine similarity between rotation augmentations seek to
cluster similarly rotated images together and repel others, we find large differences in the representations learned.
This shows that explicitly enforcing fixed categories in the auxiliary task helps in building a global semantic
representation which is reinforced across training batches. This is exclusively achieved in the minimization of
CE loss since it considers specific rotation based categories.

We study the impact of adding rotations from the set T = {0◦, 90◦, 180◦, 270◦} as augmentations in the BYOL
training pipeline. Contrary to the proposed approach, this would encourage representations that are invariant to
rotation. This leads to a large drop of 9.6% when compared to the BYOL baseline. This is consistent with the
observations by Chen et al. [7] that rotation as an augmentation is not helpful in learning good representations.
By including the rotation classification task in addition to this in the training objective, the accuracy improves by
8.05%, although it is still lower than the BYOL baseline due to the inclusion of rotation as augmentations which
is contrasting to the rotation classification objective.
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We further compare the rotation sensitivity of representations at the output of the base encoder fθ . We freeze
the network till the fθ and train a rotation task classifier over this using a 2-layer MLP head. We measure the
rotation task accuracy, which serves as an indication to the rotation sensitivity of the base network. We observe
that the trend in accuracy on the linear evaluation task is similar to the rotation task accuracy, indicating that
rotation-covariant representations are better for downstream tasks. While the use of rotation augmentation along
with rotation task prediction achieves a very high rotation accuracy, its performance on the contrastive task is
only 64.34%, which is significantly lower than the baseline and the proposed methods (Table-A1). Therefore,
the accuracy on linear evaluation task is also lower than these methods.
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