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Abstract

In typical computer vision problems on video data, pre-trained models are simply
evaluated at test time without further adaptation. This general approach inevitably
fails to capture potential distribution shifts that exist between training and test data.
Adapting a pre-trained model to a new video encountered at test time could be
essential to avoid the potentially catastrophic effects of such a shift, or to improve
performance when the shift is mild. However, the lack of available annotations
in test data prevents practitioners from using vanilla fine-tuning techniques. This
paper explores whether the recent progress in self-supervised learning and test-time
domain adaptation (TTA) in the image domain can be leveraged to efficiently adapt
a model to a previously unseen and unlabelled video. We analyze the effectiveness
of several recent self-supervised TTA techniques under the effect of both mild (but
arbitrary) and severe domain shifts. From our extensive benchmark on multiple
self-supervised dense tracking methods under various domain shifts, we find out
that self-supervised TTA methods consistently improve the performance compared
to baselines without adaptation, especially in presence of severe covariate shift.

1 Introduction

A fundamental assumption essential to the applicability of many machine learning solutions is the
agreement between training and test data distribution. As this premise is often violated in real-world
applications [6, 20], it is of high practical importance to seek solutions for adapting a pre-trained
model to the test data distribution. Considering the high cost of labeling video data, unsupervised
(and self-supervised) methods are of particular interest. Furthermore, the information inherent in the
sequence of images could already be used to tailor a pre-trained model towards the data distribution
encountered at test time.

In this paper, we analyze how unlabeled video data can be exploited for adapting pre-trained models to
the test data distribution, explicitly studying the task of self-supervised dense tracking [9, 13, 27]. In
this task, the goal is the frame-by-frame tracking of a pixel-wise mask, starting from a user-initialised
mask provided by a hypothetical user in the first frame of the video. We consider the following
real-world problem setup where 1) We make use of previously-trained self-supervised models, 2)
During training, these models did not have access to data sampled from the test distribution, 3) No
labels are used at test time. Adaptation is entirely based on self-suepervised objectives.

Recently, several approaches have studied a similar setup, but for the image domain, under the name
of test-time adaptation [18, 23, 26, 28]. However, these methods usually assume the availability of a
diverse batch of data from the test distribution (to be used for adaptation). In contrast, we study the
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problem of domain shift for individual videos, where a batch may not contain diverse enough data,
which can be problematic for neural networks using batch-normalization (BN) [8]).

Inspired by test-time adaptation methods in the image domain, we study multiple adaptation al-
gorithms for the task of dense tracking by investigating their effectiveness and limitations when
exploiting completely unlabeled video data together via a self-supervised objective. We consider
two distinct scenarios: arbitrary and severe domain shift. In the former case, we perform test-time
adaptations on unseen videos from an unknown distribution, which may be arbitrarily far from the
training data. In the latter, we impose severe domain shift by adding artificial perturbations to the
video frames.

2 Related Work

Domain Generalization and Test-time Adaptation. Domain generalization considers a scenario
where the target data distribution is unavailable during the training phase [32]. The goal is to improve
the performance on the target domain with a focus on enhancing the training process. In this respect,
[3] proposes a multi-task setup and shows that adding an auxiliary self-supervised objective improves
the generalization to unseen domains. [16] proposes a meta-learning approach in which the objective
for improving the generalization is learned itself, in contrast with methods that utilize manually
designed loss functions [1, 17]. Guo et al.[5] identify the BN layer as one of the factors that can
lead to poor confidence calibration in the network output at test-time. Several works [2, 15, 24, 31]
have studied this aspect in an attempt to adapt the normalization layer to the target distribution and
improve the performance on the test data.

Unlike the approaches mentioned above, test-time adaptation only leverages the data available at test
time. In this respect, Sun et al.[26] propose a multi-task setup using supervised and self-supervised
objectives, where an auxiliary loss is used to further fine-tune the network during inference. In [28],
the authors utilize entropy minimization [4, 21, 22, 25] to modify the modulation parameters of the
BN layer to mitigate the impact of covariate shift between the training and testing data distributions.
Furthermore, [18, 23] suggest updating the normalization statistics of the BN layer as an effective
way for adapting the features to the target domain.

In this work, we build on test-time adaptation approaches, as we adapt the pre-trained models to the
new unseen domains in video data. More details on algorithms employed in this paper can be found
in subsection A.1.

Self-supervised Dense Tracking. In recent years there has been a surge of interest in self-supervised
methods for different applications [10], including dense tracking. In [27], the authors use video
colorization as the self-supervised objective. Multiple works [11, 12, 13, 14, 29, 30] improved this
algorithm with various modifications such as and incorporating memory and cycle consistency into
the architecture and the training process. In a different line of work, [9] suggests a framework where
the video is processed into a graph by dividing each frame into multiple patches (nodes). They train
the embeddings by performing a random walk on the constructed graph using a cycle consistency
objective, creating a palindrome from the video frames. In this paper, we employ [9] and [13] as our
baselines and provide further details about these algorithms in subsection A.2.

3 Problem Setup

This section discusses our proposed problem formulation and experimental setup. Our primary focus
lies on studying the impact of covariate shift in the task of self-supervised dense tracking and the
possible remedies utilizing the unlabeled video data inspired by test-time adaptation literature from
the image domain [18, 23, 26, 28].

We initially contemplate a hypothesis where each video is considered as an individual domain with
an arbitrary distribution shift w.r.t. the training data. Next, we experiment with enforced domain shift
by manually adding various perturbations to the test videos, similarly to what is done in [6] (though
for images). To this end, we ask the following questions:

• Assuming each video represents a specific domain, how effective are the current test-time
adaptation methods when applied to the task of dense tracking?
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• Considering the self-supervised setups for dense tracking, can finetuning the model on the
target video (essentially overfitting to a specific video domain using the self-supervised
objective) further improve performance?

• In the case of clear domain shift such as the one described by the perturbations in [6], how
effective are these adaptation methods for recovering the performance in self-supervised
dense tracking tasks?

To answer to these questions, we experiment with modified variants of three recent approaches for
test-time adaptation in image domain, namely Prediction-time BN [18, 23], TENT [28], and TTT
[26]. Our setup is different from the one assumed by these methods in the following ways: First, The
mentioned methods are developed for image classification and assume a diverse batch of data from
the target distribution is available at test time. In our setup, each video is considered an individual
domain, and the frames sampled from a single video comprise the batch, meaning the batch might not
contain enough diversity. Second, All these methods build on top of models trained in a supervised
manner, while we examine baselines that are trained in a self-supervised fashion. Third, We use
a modified version of TENT [28] where the self-supervised objective substitutes the entropy loss
to alleviate the dependency to the first frame label during the adaptation phase. We refer to this
adapted version as TENT*. Fourth, Unlike the prediction-time BN scenario in [18, 23], the captured
statistics from a video sequence may not be diverse enough, so replacing the normalization statistics
in the normalization layer with those collected from the video frames might hurt the performance.
Therefore, we experiment with different momentum values as:

x̂ = (1− α)× xold + α× xnew (1)

where α ∈ [0, 1] is the momentum value and xold and xnew are the collected statistics from the
training data and the video under test, respectively. In our experimental setup, we consider two
different scenarios, apt for offline and online applications. In the former, all the video frames are
available prior to inference. In the latter, we have access to a limited amount of data from the test
domain, but not to the test frames themselves. In this paper, we use the recent self-supervised methods
VideoWalk [9] and MAST [13] as our baselines. Further details about these algorithms are provided
in subsection A.2.

4 Experiments
In this section, we illustrate the experimental results obtained on the DAVIS-2017 dataset [19], a
standard benchmark for evaluating dense tracking. Following the usual procedure in dense tracking
[19], we report the J and F scores of the segmented object masks. These metrics indicate the
intersection-over-union and object boundary accuracy respectively. According to section 3, Table 1
presents the results for offline and online setup. In each block, the first row shows the average of
J and F scores of the baselines without any adaptation in cursive. The remaining rows show the
difference w.r.t. to the first row when using each of the adaptation approaches.

In the first block of rows, we investigate the efficacy of test-time adaptation with a self-supervised
objective on the test data with arbitrary domain shifts (without any added perturbation). As we are
working with self-supervised baselines, it is interesting to understand whether further tuning on a
specific video is helpful and to which extent it can improve the performance on the downstream
task. Next, we study a scenario with a substantial domain shift between the training and testing data
distributions. In this respect, we follow the procedure in [7] and impose a synthetic covariate shift to
the video frames. In particular, we experiment with Gaussian noise, Motion Blur, Fog, and Snow
perturbations (with the maximum level of severity) as described in [6].

As can be seen from the results in Table 1, self-supervised test-time adaptation on data without
perturbation slightly improves the results, while it considerably decreases the adverse effect of
covariate shift for data with severe domain shift. The behavior in an arbitrary domain shift scenario
(without perturbation) implies that in situations with mild distribution shift, overfitting to the current
self-supervised objectives does not fully transfer to the downstream task and only marginally improves
the performance. However, these methods can successfully adapt the features to the target domain
when there is a severe distribution shift between the training and testing data. Interestingly, in most
cases, updating the normalization statics (BN column) has an equal or superior positive impact on
the dense tracking accuracy despite its simplicity. However, we note that the “fog” perturbation is
an exception where both MAST and VideoWalk methods achieve considerably better accuracy with
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Dense Tracking (offline) Dense Tracking (online) Test-time Adaptation

VideoWalk MAST VideoWalk MAST BN TENT* TTT Noise

67.39 64.95 71.95 68.98 —
+0.78 +0.55 +0.83 +1.04 X
+0.77 +0.49 +0.84 +0.25 X
+0.82 +0.22 +0.74 +0.33 X

60.74 34.09 66.16 42.44 Gaussian
+2.01 +20.18 +2.33 +18.74 X
+2.18 +18.38 +3.82 +16.54 X
+2.82 +18.11 +2.20 +15.98 X

65.86 60.97 70.10 67.26 Motion Blur
+0.60 +0.65 +1.32 +0.23 X
+0.38 +0.02 +1.37 -0.21 X
+0.15 -0.03 +1.13 -0.51 X

52.83 52.1 57.82 59.10 Snow
+2.21 +0.80 +2.70 +0.49 X
+2.40 +0.24 +2.48 +0.88 X
+3.36 +0.36 +1.95 +0.27 X

22.80 36.8 27.76 44.23 Fog
+10.99 0.00 +10.70 0.00 X
+12.12 +2.86 +9.45 +3.76 X
+18.56 +9.18 +14.14 +9.39 X

Table 1: The average of J and F scores for VideoWalk [9] and MAST [13] self-supervised dense
tracking methods on the DAVIS-2017 validation set in offline and online setups. Results in italic
correspond to absolute metrics, followed by rows indicating the absolute gain in performance when
using one of the test-time adaptation methods. For each column (within a block), best results are
outlined in bold.

TENT* and TTT algorithms. Furthermore, the results show a similar pattern in offline and online
scenarios, suggesting that performing test-time adaptation is beneficial for both circumstances.

For the results shown in column BN, we experimented with different momentum values and updated
the normalization statistics according to Equation 1. Here the results are provided with the best-found
momentum, and additional results are provided in subsection A.4. We experimentally observed
that partially updating the normalization statistics with those from the target domain alleviates the
impact of covariate shift. However, completely replacing them (momentum value of 1 in Equation 1)
can deteriorate the performance. This behavior is likely due to the lack of diversity across video
frames within the same batch. Finally, we observe different trends in the behaviour of VideoWalk
and MAST. For instance, for the “fog”-type perturbation, VideoWalk benefits from updating the
normalization statistics, whereas for MAST it is better to keep the statistics unchanged. This can
result from different training objectives in these approaches: the self-supervised loss in MAST is
purely based on color information, while VideoWalk additionally utilizes semantic information.

5 Conclusion

In this work, we investigated the role that self-supervision can have in alleviating the harmful effect
of distribution mismatch between train and test video data. We considered two scenarios of practical
relevance. One, for offline applications, in which the entire video sequence is available in advance.
Another, for online applications, in which instead we are interested in real-time inference and only
have access to some unlabeled data from the target domain prior to inference. We studied the behavior
of two best-performing self-supervised dense tracking algorithms in the presence of several domain
shifts. Our experimental results confirm that self-supervised test-time adaptation is an effective
method for decreasing the impact of covariate shift in dense tracking. For future work, we plan to
employ transductive approaches as an effective way for utilizing the information of the unlabeled
video data.
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