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Abstract

In NLP, a large volume of tasks involve pairwise comparison between two se-
quences (e.g. sentence similarity and paraphrase identification). Predominantly,
two formulations are used for sentence-pair tasks: bi-encoders and cross-encoders.
Bi-encoders produce fixed-dimensional sentence representations and are compu-
tationally efficient, however, they usually underperform cross-encoders. Cross-
encoders can leverage their attention heads to exploit inter-sentence interactions
for better performance but they require task fine-tuning and are computationally
more expensive. In this paper, we present a completely unsupervised sentence
representation model termed as TRANS-ENCODER that combines the two learn-
ing paradigms into an iterative joint framework to simultaneously learn enhanced
bi- and cross-encoders. Specifically, on top of a pre-trained Language Model
(PLM), we start with converting it to an unsupervised bi-encoder, and then alternate
between the bi- and cross-encoder task formulations. In each alternation, one
task formulation will produce pseudo-labels which are used as learning signals
for the other task formulation. We then propose an extension to conduct such
self-distillation approach on multiple PLMs in parallel and use the average of their
pseudo-labels for mutual-distillation. TRANS-ENCODER creates, to the best of our
knowledge, the first completely unsupervised cross-encoder and also a state-of-
the-art unsupervised bi-encoder for sentence similarity. Both the bi-encoder and
cross-encoder formulations of TRANS-ENCODER outperform recently proposed
state-of-the-art unsupervised sentence encoders such as Mirror-BERT and SimCSE
by up to 5% on the sentence similarity benchmarks.

1 Introduction

Comparing pairwise sentences is fundamental to a wide spectrum of tasks in NLP such as information
retrieval (IR), natural language inference (NLI), sentence textual similarity (STS) and clustering. Two
general architectures usually used for sentence-pair modelling are bi-encoders and cross-encoders.

In a cross-encoder, two sequences are concatenated and sent into the model (usually deep Transformers
like BERT/RoBERTa) in one pass. The attention heads of Transformers could directly model the
inter-sentence interactions and output a classification/relevance score. However, a cross-encoder
needs to recompute the encoding for different combinations of sentences in each unique sequence
pair, resulting in a heavy computational overhead. It is thus impractical in tasks like IR and clustering
where massive pairwise sentence comparisons are involved. Also, task fine-tuning is always required
for converting PLMs to cross-encoders. By contrast, in a bi-encoder, each sequence is encoded
separately and mapped to a common embedding space for similarity comparison. The encoded
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Figure 1: A graphical illustration of
the self-distillation learning scheme
in TRANS-ENCODER. Notice that
the blue boxes represent the same
model trained sequentially.

sentences can be cached and reused. A bi-encoder is thus much more efficient. Also, the output of a
bi-encoder can be used off-the-shelf as sentence embeddings for other downstream tasks. That said,
it is well-known that bi-encoders underperform cross-encoders (Humeau et al., 2020; Thakur et al.,
2021) since the former could not explicitly model the interactions between sentences but could only
compare them in the embedding space in a post hoc manner.

In this work, we ask the question: can we leverage the advantages of both bi- and cross-encoders
and bootstrap knowledge from them in an unsupervised manner? Our proposed TRANS-ENCODER
addresses this question with the following intuition: As a starting point, we can use bi-encoder
representations to tune a cross-encoder. With more powerful inter-sentence modelling, the cross-
encoder should resurface more knowledge from the PLMs than the bi-encoder given the same data.
In turn, the more powerful cross-encoder can distil its knowledge back to the bi-encoder. We can
repeat this cycle to iteratively bootstrap from both the bi- and cross-encoders.

2 TRANS-ENCODER

The general idea of TRANS-ENCODER is simple yet extremely effective. We first transform an
off-the-shelf PLM to a strong bi-encoder, serving as an initialisation point. Then, the bi-encoder
produces pseudo-labels and the PLM subsequently learns from these pseudo-labels in a cross-encoder
manner. Consecutively, the cross-encoder further produces more accurate pseudo-labels for bi-
encoder learning. This self-distillation process is visualised in Fig. 1. Then, we propose an extension
called mutual-distillation that stabilises training and boosts the encoder performance even more.

Transform PLMs into Effective Bi-encoders. Off-the-shelf PLMs are unsatisfactory bi-encoders.
To have a reasonably good starting point, we leverage a simple contrastive tuning procedure to
transform existing PLMs to bi-encoders. This approach is concurrently proposed in both Mirror-
BERT (Liu et al., 2021) and SimCSE (Gao et al., 2021). We use the checkpoints released by them
directly. Please refer two the two papers for details.

Self-distillation: Bi- to Cross-encoder. After obtaining a sufficiently good bi-encoder, we leverage
it to label sentence pairs sampled from the task of interest. Specifically, for a given sentence-pair
(sent1, sent2), we input them to the bi-encoder separately and get two embeddings (we use the
embedding of [CLS] from the last layer). The cosine similarity between them is regarded as their
relevance score. In this way we have constructed a self-labelled sentence-pair scoring dataset in
the format of (sent1, sent2, score). We then employ the same model architecture to learn from
these score, but with a cross-encoder formulation. The cross-encoder weights are initialised from
the original PLM. For the sentence-pair (sent1, sent2), we concatenate them to produce “[CLS]
sent1 [SEP] sent2 [SEP]” and input it to the cross-encoder. A linear layer (newly initialised)
then map the sequence’s encoding (embedding of the [CLS] token) to a scalar. The learning objective
of the cross-encoder is minimising the KL divergence between its predictions and the self-labelled
scores from the bi-encoder:

LBCE = − 1

N

N∑
n=1

(
yn · log(σ(xn)) + (1− yn) · log(1− σ(xn))

)
(1)

whereN is the data-batch size; σ(·) is the sigmoid activation; xn is the prediction of the cross-encoder;
yn is the self-labelled ground-truth score from the bi-encoder.

Note that while the cross-encoder is essentially learning from the data produced by itself (in a
bi-encoder form), usually, it outperforms the original bi-encoder on held-out data. The cross-encoder
directly discovers the similarity between two sentences through its attention heads, finding more
accurate cues to justify the relevance score. The ability of discovering such cues could then generalise
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Figure 2: A graphical illustration of the
mutual-distillation learning scheme in TRANS-
ENCODER. Note that, for simplicity, only
the bi- to cross-encoder mutual-distillation is
shown. We also conduct cross- to bi-encoder
mutual-distillation in the same manner.

to unseen data, resulting in stronger sentence-pair scoring capability than the original bi-encoder.
From a knowledge distillation perspective, we can view the bi- and cross-encoder as the teacher and
student respectively. In this case the student outperforms the teacher, not because of stronger model
capacity, but smarter task formulation. By leveraging this simple yet powerful observation, we are
able to design a learning scheme that iteratively boosts the performance of both bi- and cross-encoder.

Self-distillation: Cross- to bi-encoder. With the more powerful cross-encoder at hand, a natural
next step is distilling the extra gained knowledge back to a bi-encoder form, which is more useful for
downstream tasks. Besides, and more importantly, a better bi-encoder could produce even more self-
labelled data for cross-encoder learning. In this way we could repeat bi- to cross-encoder distillation
and vice versa, continually bootstrapping the encoder performance.

We create the self-labelled sentence-scoring dataset in the same way as bi-to-cross distillation except
that the cross-encoder is used for producing the relevance score. The bi-encoder is initialised with
the weights after Mirror-BERT/SimCSE training. For every sentence pair, two sentence embeddings
are produced separately by the bi-encoder. The cosine similarity between the two embeddings
are regarded as their predictions of the relevance score. The aim is to regress the predictions to
the self-labelled scores by the cross-encoder. We use a mean square error (MSE) loss: LMSE =

− 1
N

∑N
n=1

(
xn − yn

)2
where N is the batch size; xn is the cosine similarity between a sentence

pair; yn is the self-labelled ground-truth. In experiments, we will show that this resulting bi-encoder
is more powerful than the initial bi-encoder. Sometimes, the bi-encoder will even outperform its
teacher (i.e. the cross-encoder).

Mutual-distillation. The aforementioned self-learning approach has a drawback: since the model
regresses to its previous predictions, it tends to reinforce its errors. To mitigate this problem, we
design a simple mutual-distillation approach to smooth out the errors/biases originated from PLMs.
Specifically, we conduct self-distillation on multiple PLMs in parallel (for brevity, we use two in
this paper: BERT and RoBERTa, however the framework itself is compatible with any number of
PLMs). Each PLM does not communicate/synchronise with each other except when producing
the self-labelled scores. In mutual-distillation, we use the average predictions of all models as the
ground-truth for the next round of learning. A graphical illustration is shown in Fig. 2.

In the following, we call all self-distillation models TRANS-ENCODER (or TENC for short); all
mutual-distillation models TRANS-ENCODER-mutual (or TENC-mutual for short).

3 Results and Discussion

STS and binary classification results (Tab. 1; Tab. 2). The main results for STS are listed in
Tab. 1. Compared with the baseline SimCSE, TRANS-ENCODER has brought significant improve-
ments across the board. With various variants of the SimCSE as the base model, TRANS-ENCODER
consistently enhances the average score by approximately 4-5%.2 Self-distillation usually brings an
improvement of 2-3%. Further, mutual-distillation brings another 1-3%. For binary classification
tasks (i.e., On QQP, QNLI, and MRPC), we observe similar trends as the STS tasks (Tab. 2).

Domain transfer setup (Tab. 3). One of the key questions we are keen to find out is how much
of TRANS-ENCODER’s success on in-domain tasks generalises/transfers to other tasks/domains.
Specifically, does TRANS-ENCODER create universally better bi- and cross-encoders, or is it only

2Similar trends observed on Mirror-BERT, see Appendix (App. §A.3).
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dataset→ STS12 STS13 STS14 STS15 STS16 STS-B SICK-R avg.

SimCSE-RoBERTa-base 68.34 80.96 73.13 80.86 80.61 80.20 68.62 76.10
+ TENC (bi) 73.36 82.47 76.39 83.96 82.67 82.05 67.63 78.36
+ TENC (cross) 72.59 83.24 76.83 84.20 82.82 82.85 69.51 78.86
+ TENC-mutual (bi) 75.01 85.22 78.26 85.16 83.22 83.88 72.56 80.47
+ TENC-mutual (cross) 76.37 85.87 79.03 85.77 83.77 84.65 72.62 81.15

SimCSE-RoBERTa-large 71.40 84.60 75.94 84.36 82.22 82.67 71.23 78.92
+ TENC (bi) 77.92 86.69 79.29 87.23 84.22 86.10 68.36 81.40
+ TENC (cross) 78.32 86.20 79.61 86.88 82.93 84.48 67.90 80.90
+ TENC-mutual (bi) 78.15 88.39 81.76 88.38 84.95 86.55 72.31 82.93
+ TENC-mutual (cross) 78.28 88.31 81.94 88.63 85.03 86.70 71.63 82.93

Table 1: English STS. Spearman’s ρ rank correlations are reported. TENC models use only self-
distillation while TENC-mutual models use mutual-distillation as well. Blue and red denotes
mutual-distillation models that are trained in the base and large group respectively. Models without
colour are not co-trained with any other models. Full table see Appendix (Tab. 8).

dataset→ QQP QNLI MRPC avg.

SimCSE-BERT-base 80.38 71.38 75.02 75.59
+ TENC (bi) 82.10 75.30 75.71 77.70
+ TENC (cross) 82.10 75.61 76.21 77.97
+ TENC-mutual (bi) 84.00 76.93 76.62 79.18
+ TENC-mutual (cross) 84.29 77.11 77.77 79.72

Table 2: Binary classification task
results. AUC scores are reported.
We only demonstrate results for one
model for brevity. Full table can be
found in Appendix (Tab. 9).

task/domain-specific? To answer the question, we directly test models trained with the STS task data
on binary classification tasks. For bi-encoders, i.e. TENC (bi), the results are inconsistent across
setups. These results hint that training on in-domain data is important for optimal performance
gains for unsupervised bi-encoders. This is in line with the finding of (Liu et al., 2021). However,
for cross-encoders, surprisingly, we see extremely good transfer performance. W/ or w/o mutual-
distillation, TENC (cross) models outperform the SimCSE baselines by large margins, despite the fact
that tasks like QQP and QNLI are of a very different domain compared with STS. In fact, they are
sometimes even better than models tuned on the in-domain task data (c.f. Tab. 9). The finding hints
that the cross-encoder architecture is by design very suitable for sentence-pair modelling (i.e. strong
inductive bias is already in the architecture design), and once its sentence-pair modelling capability is
‘activated’, it is an extremely powerful universal representation that can be transferred to other tasks.

4 Conclusion

We propose TRANS-ENCODER, an unsupervised approach of training bi- and cross-encoders for
sentence-pair tasks. The core idea of TRANS-ENCODER is self-distillation in a smart way: alter-
natively training a bi-encoder and a cross-encoder (of the same architecture) with pseudo-labels
created from the other. We also propose a mutual-distillation extension to mutually bootstrap two
self-distillation models trained in parallel. On sentence-pair tasks including sentence similarity, ques-
tion de-duplication, question-answering entailment, and paraphrase identification, we show strong
empirical evidence verifying the effectiveness of TRANS-ENCODER. We also found the surprisingly
strong generalisation capability of our trained cross-encoders across domains and tasks. Finally, we

dataset→ QQP QNLI MRPC avg.

SimCSE-RoBERTa-base 81.82 73.54 75.06 76.81
+ TENC (bi) 82.56 71.67 74.24 76.16
+ TENC (cross) 83.66 79.38 79.53 80.86
+ TENC-mutual (bi) 81.71 72.78 75.51 76.67
+ TENC-mutual (cross) 83.92 79.79 79.96 81.22

Table 3: A domain transfer setup:
testing TRANS-ENCODER models
trained with STS data directly on bi-
nary classification tasks. We only
demonstrate results for one model for
brevity. Full table can be found in
Appendix (Tab. 10).
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conduct thorough ablation studies and analysis to verify our design choices and shed insight on the
model mechanism.
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A Appendix

A.1 Evaluation Tasks

Evaluation task: sentence textual similarity (STS). Following prior works (Reimers and
Gurevych, 2019; Liu et al., 2021; Gao et al., 2021), we consider seven STS datasets: SemEval
STS 2012-2016 (STS12-16, Agirre et al. 2012, 2013, 2014, 2015, 2016), STS Benchmark (STS-B,
Cer et al. 2017) and SICK-Relatedness (SICK-R, Marelli et al. 2014). In all these datasets, sentence
pairs are given a human-judged relevance score from 1 to 5. We normalise them to 0 and 1 and
models are asked to predict the scores. We report Spearman’s ρ rank correlation between the two.

Evaluation task: binary classification. We also test TRANS-ENCODER on sentence-pair binary
classification tasks where the model has to decide if a sentence-pair has certain relations. We choose
(1) the Quora Question Pair (QQP) dataset, requiring a model to judge whether two questions are
duplicated; (2) a question-answering entailment dataset QNLI (Rajpurkar et al., 2016; Wang et al.,
2019) in which given a question and a sentence the model needs to judge if the sentence answers the
question; (3) the Microsoft Research Paraphrase Corpus (MRPC) which asks a model to decide if
two sentences are paraphrases of each other. The ground truth labels of all datasets are either 0 or 1.
Following (Li et al., 2020; Liu et al., 2021), we compute Area Under Curve (AUC) scores using the
binary labels and the cosine similarity scores of sentence-pair embeddings.

A.2 Experimental Setup

Training and evaluation details. For each task, we use all available sentence pairs (from train,
development and test sets of all datasets combined) without their labels as training data. The original
QQP and QNLI datasets are extremely large. We thus downsample QQP to have 10k, 1k and 10k
pairs for train, dev and test; QNLI to have 10k train set. QNLI does not have public ground truth
labels for testing. So, we use its first 1k examples in the official dev set as our dev data and the
rest in the official dev set as test data. The dev set for MRPC is its official dev sets. The dev set
for STS12-16, STS-B and SICK-R is the dev set of STS-B. We save one checkpoint for every 200
training steps and at the end of each epoch. We use the dev sets to select the best model for testing.
Dev sets are also used to tune the hyperprameters in each task.

For clear comparison with SimCSE and Mirror-BERT, we use their released checkpoints as initiali-
sation points (i.e., we do not train them ourselves). We consider four SimCSE variants. Two base
variants: SimCSE-BERT-base, SimCSE-RoBERTa-base; and two large variants: SimCSE-BERT-
large, SimCSE-RoBERTa-large. We consider two Mirror-BERT variants: Mirror-RoBERTa-base
and Mirror-RoBERTa-base-drophead.3 For brevity, our analysis in the main text focuses on SimCSE
models. We list Mirror-BERT results in Appendix. We train TRANS-ENCODER models for 3 cycles
on the STS task and 5 cycles on the binary classification tasks. Within each cycle, all bi- and
cross-encoders are trained for 10 and 1 epochs respectively for the STS task; 15 and 3 epochs for
binary classification.4 All models use AdamW (Loshchilov and Hutter, 2019) as the optimiser. In all
tasks, unless noted otherwise, we create final representations using [CLS]. We train our base models
on a server with 4 * V100 (16GB) GPUs and large models on a server with A100 (40GB) GPUs. All
main experiments have the same fixed random seed (2021).5

Mutual-distillation setup. For the two models used for mutual-distillation, they are either (1)
the base variant of SimCSE-BERT and SimCSE-RoBERTa or (2) the large variant of the two.
Theoretically, we could mutually distil even more models but we keep the setup simple for fast and
clear comparison. Also, since mutual-distillation models use information from both PLMs, we also
list ensemble results that use the average of the predictions from two TRANS-ENCODERs.

3We do not consider BERT-based checkpoints by Liu et al. (2021) since they adopt mean pooling over all
tokens. For brevity, we only experiment with encoders trained with [CLS].

4We use fewer epochs for cross-encoders since they usually converge much faster than bi-encoders.
5All other hparams listed in Appendix.
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dataset→ STS12 STS13 STS14 STS15 STS16 STS-B SICK-R avg.

Mirror-RoBERTa-base 64.67 81.53 73.05 79.78 78.16 78.36 70.03 75.08
+ TENC (bi) 71.99 81.85 75.73 83.32 79.97 81.19 69.47 77.64
+ TENC (cross) 73.10 82.31 76.49 83.71 79.64 81.70 69.70 78.09

Mirror-RoBERTa-base-drophead 68.15 82.55 73.47 82.26 79.44 79.63 71.58 76.72
+ TENC (bi) 74.95 83.86 77.50 85.80 83.22 83.94 72.56 80.26
+ TENC (cross) 75.70 84.58 78.35 86.49 83.96 84.26 72.76 80.87

Table 4: English STS (Mirror-BERT models). Spearman’s ρ scores are reported.

dataset→ QQP QNLI MRPC avg.

Mirror-RoBERTa-base 78.89 73.73 75.44 76.02
+ TENC (bi) 82.34 79.57 77.08 79.66
+ TENC (cross) 82.00 79.87 78.40 80.09

Mirror-RoBERTa-base-drophead 78.36 75.56 77.18 77.03
+ TENC (bi) 82.04 82.12 79.63 81.26
+ TENC (cross) 82.90 82.52 81.38 82.27

Table 5: Binary classification (Mirror-BERT models). AUC scores are reported.

A.3 Mirror-BERT Results

As seen in Tab. 4 and Tab. 5, TRANS-ENCODER brings significant improvement to the base Mirror-
BERT models, similar to what we have observed on SimCSE models. After TRANS-ENCODER
training, the Mirror-BERT-based models perform even slightly better than SimCSE-based models, on
both the STS and binary classification tasks. We suspect it is due to that SimCSE checkpoints are
trained for more iterations (with the contrastive learning objective) and thus are more prone to overfit
the training corpus.

A.4 Discussions and Analysis

In this section we discuss some interesting phenomena we observed, justify design choices we made
in an empirical way, and also show a more fine-grained understanding of what exactly happens when
using TRANS-ENCODER.

Initiate with the original weights or train sequentially? (Fig. 3a) As mentioned in §2, we
initiate bi-encoders with SimCSE/Mirror-BERT weights and cross-encoders with PLMs’ weights (we
call this strategy refreshing). We have also tried maintaining the weights of bi- and cross-encoders
sequentially. I.e., we initiate the cross-encoder’s weights with the bi-encoder which just created the
pseudo labels and vice versa (we call this strategy sequential). The benefit of doing so is keeping all
the legacy knowledge learned in the process of self-distillation in the weights. As suggested in Fig. 3a
(also in Appendix Tab. 11), refreshing is slightly better than sequential. We suspect it is because
initiating with original weights alleviate catastrophic forgetting problem in self-supervised learning,
similar to the moving average and stop-gradient strategy used in contrastive SSL methods such as
MoCo (He et al., 2020).

Self-distillation without alternating between different task formulations? (Fig. 3b) If we disre-
gard the bi- and cross-encoder alternating training paradigm but using the same bi-encoder architecture
all along, the model is then similar to the standard self-distillation model (c.f. Figure 1 by Mobahi
et al. (2020)). Theoretically, standard self-distillation could also have helped, especially considering
that it adapts the model to in-domain data. However, as seen in Fig. 3b (and also Appendix Tab. 12),
standard self-distillation lags behind TRANS-ENCODER by a significant amount, and sometimes
underperforms the base model. Standard self-distillation essentially ensembles different checkpoints
(i.e., the same model at different training phase provides different views of the data). TRANS-
ENCODER can be seen as a type of self-distillation model, but instead of using previous models to
provide ‘views’ of data, we use different task formulations (i.e. bi- and cross-encoder) to provide
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Figure 4: TRANS-ENCODER’s performance against distillation cycles under different base models
and tasks.

different views of the data. The fact that standard self-distillation underperforms TRANS-ENCODER
by large margins suggest the effectiveness of our proposed bi- and cross-encoder training scheme.

How many cycles is optimal? (Fig. 4) Our approach iteratively bootstrap the performance of both
bi- and cross-encoders. But how many iterations (cycles) are enough? We find that it heavily depends
on the model and dataset, and could be unpredictable (since the ‘optimality’ depends on a relatively
small dev set). In Fig. 4, we plot the TRANS-ENCODER models’ (self-distillation only) performances
on dev sets in three tasks: STS, QQP, and QNLI. In general, the patterns are different across datsets
and models.

Does more training data help? (Fig. 5) We control the number of training samples drawn and test
the TRANS-ENCODER model (using SimCSE-BERT-base) on STS test sets. The average performance
on all STS tasks are reported in Fig. 5, with three runs of different random seeds. There are in total
37,081 data points from STS. We only draw from these in-domain data until there is none left. It
can be seen that for in-domain training, more data points are usually always beneficial. Next, we
test with more samples drawn from another task, SNLI (Bowman et al., 2015), containing abundant
sentence-pairs. The performance of the model further increases till 30k extra data points and starts to
gradually decrease after that point. However, it is worth mentioning that there will be discrepancy
of such trends across tasks and models. And when needed, one can mine as many sentence-pairs as
desired from a general corpus (such as Wikipedia) for TRANS-ENCODER learning.

How robust is TRANS-ENCODER? (Tab. 6) As mentioned, our experiments used one fixed
random seed. Due to the scale of the experiments, performing multiple runs with different random
seeds for all setups is overly expensive. We pick STS and the base variants of BERT and RoBERTa
as two examples for showing results of five runs (shown in Tab. 6).

STS and SICK-R as different tasks (Tab. 7, Fig. 6). It is worth noting that in the STS main results
table (Tab. 1), SICK-R is the only dataset where TRANS-ENCODER models lead to performance
worse than the baselines in some settings (e.g., on SimCSE-BERT-large). We believe it is due to
that SICK-R is essentially a different task from STS2012-2016 and STS-B since SICK-R is labelled
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Figure 5: STS performance against number
of training samples. ‘full’ means all STS in-
domain data are used. After ‘full’, the samples
are drawn from the SNLI dataset. Note that
each point in the graph is an individual run.

dataset→ mean S.D.

SimCSE-BERT-base
+ TENC (bi) 78.72 0.16
+ TENC (cross) 78.21 0.26

SimCSE-RoBERTa-base
+ TENC (bi) 78.38 0.26
+ TENC (cross) 78.90 0.34

Table 6: Mean and standard deviation (S.D.) of five runs on STS.

Data→ STS SICK-R

model→ off-the-shelf +TENC (bi) +TENC (cross) +TENC (bi) +TENC (cross)

SimCSE-BERT-base 72.22 71.84 71.16 74.13 74.43
SimCSE-RoBERTa-base 68.62 67.63 69.51 68.39 70.38
SimCSE-BERT-large 73.88 71.46 70.90 74.92 74.98
SimCSE-RoBERTa-large 71.23 68.36 67.90 72.63 73.13

Table 7: Compare TRANS-ENCODER models trained with all STS data (using STS-B’s dev set) and
SICK-R data only (using SICK-R’s dev set). Large performance gains can be obtained when treating
SICK-R as a standalone task.

with a different aim in mind. It focuses specifically on compositional distributional semantics.6 To
verify our claim, we train SICK-R as a standalone task using its official dev set instead of STS-B. All
sentence pairs from SICK-R are used as raw training data. The results are shown in Tab. 7 and Fig. 6.
As shown, around 3-4% gain can be obtained by switching to training on SICK-R only, confirming the
different nature of the two tasks. This suggests that generalisation is also dependent on the standard
of how relevance is defined between sequences in the target dataset, and training with an in-domain
dev set maybe crucial when the domain shift between training and testing data is significant.

A.5 Full Tables

Here, we list the full tables of SimCSE STS (Tab. 8) and binary classification results (Tab. 9); SimCSE
domain transfer results (Tab. 10); and full tables for ablation studies (Tab. 11, Tab. 12), which are
presented as figures in the main texts in Fig. 3.

6SICK-R “includes a large number of sentence pairs that are rich in the lexical, syntactic and semantic
phenomena that Compositional Distributional Semantic Models (CDSMs) are expected to account for (e.g.,
contextual synonymy and other lexical variation phenomena, active/passive and other syntactic alternations,
impact of negation, determiners and other grammatical elements), but do not require dealing with other aspects
of existing sentential data sets (e.g., STS, RTE) that are not within the scope of compositional distributional
semantics.” (see http://marcobaroni.org/composes/sick.html).
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Figure 6: Graphical presentation of Tab. 7.

# dataset→ STS12 STS13 STS14 STS15 STS16 STS-B SICK-R avg.

single-model results

1 SimCSE-BERT-base∗ 68.64 82.39 74.30 80.69 78.71 76.54 72.22 76.21
1.1 + TENC (bi) 72.17 84.40 76.69 83.28 80.91 81.26 71.84 78.65
1.2 + TENC (cross) 71.94 84.14 76.39 82.87 80.65 81.06 71.16 78.32
1.3 + TENC-mutual (bi) 75.09 85.10 77.90 85.08 83.05 83.90 72.76 80.41
1.4 + TENC-mutual (cross) 75.44 85.59 78.03 84.44 82.65 83.61 69.52 79.90
2 SimCSE-RoBERTa-base 68.34 80.96 73.13 80.86 80.61 80.20 68.62 76.10
2.1 + TENC (bi) 73.36 82.47 76.39 83.96 82.67 82.05 67.63 78.36
2.2 + TENC (cross) 72.59 83.24 76.83 84.20 82.82 82.85 69.51 78.86
2.3 + TENC-mutual (bi) 75.01 85.22 78.26 85.16 83.22 83.88 72.56 80.47
2.4 + TENC-mutual (cross) 76.37 85.87 79.03 85.77 83.77 84.65 72.62 81.15

3 SimCSE-BERT-large 71.30 84.32 76.32 84.28 79.78 79.04 73.88 78.42
3.1 + TENC (bi) 75.55 84.08 77.01 85.43 81.37 82.88 71.46 79.68
3.2 + TENC (cross) 75.81 84.51 76.50 85.65 82.14 83.47 70.90 79.85
3.3 + TENC-mutual (bi) 78.19 88.51 81.37 88.16 84.81 86.16 71.33 82.65
3.4 + TENC-mutual (cross) 77.97 88.31 81.02 88.11 84.40 85.95 71.92 82.52
4 SimCSE-RoBERTa-large 71.40 84.60 75.94 84.36 82.22 82.67 71.23 78.92
4.1 + TENC (bi) 77.92 86.69 79.29 87.23 84.22 86.10 68.36 81.40
4.2 + TENC (cross) 78.32 86.20 79.61 86.88 82.93 84.48 67.90 80.90
4.3 + TENC-mutual (bi) 78.15 88.39 81.76 88.38 84.95 86.55 72.31 82.93
4.4 + TENC-mutual (cross) 78.28 88.31 81.94 88.63 85.03 86.70 71.63 82.93

ensemble results (average predictions of two models)

1+2 SimCSE-base ensemble 70.71 83.49 76.45 83.13 81.79 81.51 71.94 78.43
1.1+2.1 TENC-base (bi) ensemble 73.58 85.01 78.35 85.02 83.21 84.07 70.93 80.03
1.2+2.2 TENC-base (cross) ensemble 74.25 84.92 78.57 85.16 83.25 83.52 70.73 80.06
1.3+2.3 TENC-mutual-base (bi) ensemble 75.29 85.34 78.49 85.28 83.43 84.09 72.75 80.67
1.4+2.4 TENC-mutual-base (cross) ensemble 76.60 86.18 79.09 85.49 83.64 84.67 71.96 81.09

3+4 SimCSE-large ensemble 73.22 86.03 78.15 85.95 82.83 83.05 73.86 80.66
3.1+4.1 TENC-large (bi) ensemble 78.49 87.02 80.31 87.85 84.31 86.54 72.39 82.41
3.2+4.2 TENC-large (cross) ensemble 77.93 86.91 79.83 87.82 83.74 85.58 72.02 81.98
3.3+4.3 TENC-mutual-large (bi) ensemble 78.42 88.60 81.91 88.38 85.01 86.52 72.23 83.01
3.4+4.4 TENC-mutual-large (cross) ensemble 78.52 88.70 81.90 88.67 84.96 86.70 72.03 83.07

Table 8: English STS. Spearman’s ρ rank correlations are reported. TENC models use only self-
distillation while TENC-mutual models use mutual-distillation as well. Blue and red denotes
mutual-distillation models that are trained in the base and large group respectively. Models without
colour are not co-trained with any other models. ∗Note that for base encoders, our results can slightly
differ from numbers reported in (Gao et al., 2021) since different evaluation packages are used.
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# dataset→ QQP QNLI MRPC avg.

single-model results

SimCSE-BERT-base 80.38 71.38 75.02 75.59
+ TENC (bi) 82.10 75.30 75.71 77.70
+ TENC (cross) 82.10 75.61 76.21 77.97
+ TENC-mutual (bi) 84.00 76.93 76.62 79.18
+ TENC-mutual (cross) 84.29 77.11 77.77 79.72
SimCSE-RoBERTa-base 81.82 73.54 75.06 76.81
+ TENC (bi) 84.13 77.08 75.29 78.83
+ TENC (cross) 85.16 80.49 76.09 80.58
+ TENC-mutual (bi) 84.36 77.29 76.90 79.52
+ TENC-mutual (cross) 84.73 77.32 78.47 80.17

SimCSE-BERT-large 82.42 72.46 75.93 76.94
+ TENC (bi) 84.53 78.22 78.42 80.39
+ TENC (cross) 84.18 79.71 79.43 81.11
+ TENC-mutual (bi) 85.72 81.61 79.59 82.31
+ TENC-mutual (cross) 86.55 81.55 79.69 82.60
SimCSE-RoBERTa-large 82.99 75.76 77.24 78.66
+ TENC (bi) 85.65 84.49 79.34 83.16
+ TENC (cross) 86.16 84.69 81.00 83.95
+ TENC-mutual (bi) 85.65 81.87 79.53 82.35
+ TENC-mutual (cross) 86.38 83.14 81.77 83.76

ensemble results (average predictions of two models)

SimCSE-base ensemble 81.10 72.46 75.04 76.20
TENC-base (bi) ensemble 83.11 76.19 75.45 78.25
TENC-base (cross) ensemble 84.15 78.55 78.90 80.53
TENC-mutual-base (bi) ensemble 84.18 77.11 76.76 79.35
TENC-mutual-base (cross) ensemble 84.68 77.92 78.22 80.27

SimCSE-large ensemble 82.47 74.09 76.55 77.70
TENC-large (bi) ensemble 85.09 81.35 78.88 81.77
TENC-large (cross) ensemble 86.22 83.78 81.06 83.69
TENC-mutual-large (bi) ensemble 86.10 81.74 79.56 82.47
TENC-mutual-large (cross) ensemble 86.26 82.86 81.41 83.51

Table 9: Binary classification task results (SimCSE models; full table). AUC scores are reported.

A.6 Data Statistics

A complete listing of train/dev/test stats of all used datasets can be found in Tab. 13. Note that for
STS 2012-2016, we dropped all sentence-pairs without a valid score. And the train sets include all
sentence pairs (w/o labels) regardless of split in each task.
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dataset→ QQP QNLI MRPC avg.

SimCSE-BERT-base 80.38 71.38 75.02 75.59
+ TENC (bi) 80.80 72.35 74.53 75.89
+ TENC (cross) 80.84 78.81 79.42 79.69
+ TENC-mutual (bi) 83.24 72.88 75.86 77.33
+ TENC-mutual (cross) 82.40 78.30 78.72 79.81
SimCSE-RoBERTa-base 81.82 73.54 75.06 76.81
+ TENC (bi) 82.56 71.67 74.24 76.16
+ TENC (cross) 83.66 79.38 79.53 80.86
+ TENC-mutual (bi) 81.71 72.78 75.51 76.67
+ TENC-mutual (cross) 83.92 79.79 79.96 81.22
SimCSE-BERT-large 82.42 72.46 75.93 76.94
+ TENC (bi) 81.86 71.99 74.99 76.28
+ TENC (cross) 83.31 79.62 79.93 80.95
+ TENC-mutual (bi) 82.30 72.47 76.74 77.17
+ TENC-mutual (cross) 83.04 79.58 81.18 81.27
SimCSE-RoBERTa-large 82.99 75.76 77.24 78.66
+ TENC (bi) 82.34 70.88 76.05 76.42
+ TENC (cross) 85.98 80.07 81.20 82.42
+ TENC-mutual (bi) 85.28 71.56 76.81 77.88
+ TENC-mutual (cross) 86.31 81.77 81.86 83.31

Table 10: Full table for domain transfer setup: testing TRANS-ENCODER (SimCSE models) trained
with STS data directly on binary classification tasks.

dataset→ STS (avg.)

SimCSE-BERT-base 76.21
+ TENC (bi) sequential 78.08
+ TENC (cross) sequential 77.92
+ TENC (bi) refreshing 78.65
+ TENC (cross) refreshing 78.32

SimCSE-RoBERTa-base 76.10
+ TENC (bi) sequential 78.32
+ TENC (cross) sequential 78.72
+ TENC (bi) refreshing 78.36
+ TENC (cross) refreshing 78.86

Table 11: Ablation: sequential training with the same set of weights vs. refreshing weights for all
models.

dataset→ STS (avg.) QNLI

SimCSE-BERT-base 76.21 71.38
+ standard-self-distillation 77.16 70.95
+ TENC (bi) 78.65 75.30
+ TENC (cross) 78.32 75.61

SimCSE-RoBERTa-base 76.10 73.54
+ standard-self-distillation 76.25 73.40
+ TENC (bi) 78.36 77.04
+ TENC (cross) 78.86 80.49

Table 12: Ablation: compare TRANS-ENCODER with standard self-distillation.
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Dataset |Train| |Dev| |Test|
STS 2012 - - 3,108
STS 2013 - - 1,500
STS 2014 - - 3,750
STS 2015 - - 3,000
STS 2016 - - 1,186
STS-B - 1,500 1,379
SICK-R - 495 4,906
STS train (full)? 37,081 - -

QQP 21,000 1,000 10,000
QNLI 15,463 1,000 4,463
MRPC 5,801 408 1,725

Table 13: A listing of train/dev/test stats of all used datasets. ?: a collection of all individual
sentence-pairs from all STS tasks.
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