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Abstract

In recent visual self-supervision works, an imitated classification objective, called
pretext task, is established by assigning labels to transformed or augmented input
images. The goal of pretext can be predicting what transformations are applied to
the image. However, it is observed that image transformations already present in
the dataset might be less effective in learning such self-supervised representations.
Building on this observation, we propose a framework based on generative adver-
sarial network to automatically find the transformations which are not present in
the input dataset and thus effective for the self-supervised learning. This automated
policy allows to estimate the transformation distribution of a dataset and also con-
struct its complementary distribution from which training pairs are sampled for the
pretext task. We evaluated our framework using several visual recognition datasets
to show the efficacy of our automated transformation policy.

1 Introduction

Recently, self-supervised learning (SSL) has received great attention in the field of computer vision.
In contrast to the supervised learning that requires ground-truth labels, SSL learns representations by
defining a pretext task that helps construct labels from the input signals themselves. In literature, a
number of pretext tasks have been proposed with various transformations and augmentations: e.g.,
predicting the rotation degrees [1, 2], solving jigsaw puzzles [3], and minimizing the distance between
representations of different augmented views of the same image (instance discrimination) [4, 5]. The
constructed objective functions of the pretext task are applied to learn the representations, which are
then re-used for downstream applications [6–12].

The performance of the self-supervised representation on downstream applications depends highly on
the choice of the transformations used in the pretext task. However, there have been only few works
that examined the choice of the transformations [13–15]. Especially, [13] expressed a Visual Transfor-
mation for Self-Supervision (VTSS) hypothesis that postulates the learned representations would be
less useful if the pretext task involves the transformations already present in the dataset. It provided
the empirical verification by manually inspecting the dataset, finding the present transformations (e.g.,
rotation, translation, and scale), and evaluating the effectiveness of the found transformations with
multiple downstream classification problems. However, even if the VTSS hypothesis is supported,
the following two questions still need to be answered to utilize it in deep learning scenarios, "How to
determine the transformation already present in the dataset?", " How to identify transformations that
are effective for a self-supervision task?"

This paper proposes a novel method to automate the transformation policy for self-supervision
tasks to address the above questions. First, we introduce a learning framework to estimate visual
∗These two authors contributed equally.
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Figure 1: (a) Our framework to estimate the visual transformations present in a dataset Ic. (b)
Generator produces visual transformation parameters through the mapping network that projects a
known distribution to the desired distribution.

transformations. We learn a parameterized visual transformation function to estimate the distribution
of the transformation present in the dataset. Then, we construct another distribution which is
complementary to the estimated one to obtain the transformation instance not included in the dataset.
For instance, if the estimated transformation is known to follow a uniform distribution between
certain bounds, such as 0-90 degrees rotation, we can easily determine its complementary distribution
ranging from 90-360. However, modeling the transformation distribution of a dataset without such a
prior is not straightforward. To handle this challenge, we define a mapping network that estimates
the transformation distribution of the dataset with a known distribution (e.g., Gaussian), and the
mapping network is learned by adversarial learning [16]. Here, the histogram of the output values
from the mapping network represents the transformation distribution, and then we can construct its
complementary distribution to sample a transformation instance for the pretext task of self-supervised
learning. Through extensive experiments on various datasets, including MNIST [17], Fashion
MNIST [18], SVHN [19], CIFAR-10 [20], and CIFAR-100 [20], we provide empirical evidence to
confirm the efficacy of our automated visual transformation policy.

In summary, the contributions of this paper can be summarized as follows: (i) A framework based on
a generative adversarial network to obtain the distribution of transformations present in a dataset; (ii)
Construction of the distribution complementary to the estimated distribution in (i); (iii) Generation
of a useful pretext task for self-supervised learning with the transformation instances sampled
from the complementary distribution; (iv) Comprehensive study, analysis and comparison of the
representations learned from our transformation instances on multiple visual recognition benchmarks.

2 Related Work

Self-supervised learning. With the capability of learning a representation given unlabeled data,
many research works on self-supervised learning have recently been presented and applied to various
applications in computer vision, natural language processing [21, 22], and robotics [23–27]. Most
previous works consider manually designing a pretext task involving specific visual transformations.

Analysis on the visual transformation and strategy. Only a few works address the impact of certain
geometric transformations in the pretext task to learn representations for downstream tasks [13–15].
To our knowledge, VTSS [13] is the first to discuss that certain transformations are preferable for
defining a pretext task. We automatically find good transformation parameters for defining pretext
tasks and propose an automated policy choosing the transformation instances for the target dataset.

3 Proposed Method

3.1 Distribution estimation for visual transformations

Learning framework to estimate visual transformations. We propose a learning-based frame-
work to estimate the distribution of visual transformations present in the dataset. In practice, most
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collected datasets inherently assume that visual transformations they depict are from specific distribu-
tions. Generally, the priors on such distributions are not available, and thus we consider learning a
parameterized model to represent such distributions.

For a dataset Ic, we choose a reference subset that includes the most representative and frequent data
(e.g., upright images), denoted by Iref = {xiref}Ni=1 where N is much smaller than the size of Ic
(e.g., 1-3 images per class). Let T be a set of all possible visual transformations such as affine, color,
style-based visual transformation, etc. Assume it consists of K transformations, T = {t1, t2, ..., tK},
where tk denotes a transformation type, and tk(x) represents the corresponding transformed data.
If we augment Iref with the transformations present in Ic, it is intuitive that the transformation
parameter distributions of Itrans = {t1(x1:Nref ), t2(x1:Nref ), ..., tK(x1:Nref )} and Ic are similar. We omit
k for the simplicity in describing our algorithm for the subsequent paragraphs.

Based on this, we consider to model pθ which is the distribution of transformation parameter for
Itrans, from where a specific transformation t can be sampled. Here, we learn pθ to represent pc
which is the distribution of transformation parameter for Ic, by minimizing the distance between pθ
and pc with an adversarial learning (discriminator and generator). The idea is illustrated in Fig. 1a.

One of key components of our framework is modeling the learnable distribution pθ with the parame-
terized transformation t(x; θ). A transformation parameter is sampled from pθ to obtain a specific
transformation t(x; θ). We consider training a mapping network f(·) to project a standard distribution
into the desired distribution pθ, and the reparameterization trick [28] is exploited to backpropagate
through to the parameters θ of the distribution pθ. In Appendix C, we describe how to parameterize
visual transformations t including geometric and color transforms and how to flow back the loss
gradients to sampling grid coordinates for geometric transforms.

As illustrated in Fig 1b, we learn the mapping network f(·) that maps a known distribution to the
desired distribution. This can induce more complex distributions. The mapping network consists of
fully connected layers with non-linear activations, and the inputs are random vectors sampled from
known distributions, e.g., uniform or Gaussian distributions. The outputs of the mapping network
are transformation parameters, and pθ can be obtained from the histogram of the outputs. Thus,
the network learns how to produce the desired distributions by combining known distributions. In
summary, the network projects a simple distribution into any complex distribution that can model the
distribution of transformations present in the dataset.

To train pθ, we minimize the distance between two distributions pθ and pc. For this, we consider the
following loss function, L = E

θ∼pθ
[l(t(xref ; θ),xc)], where t(; θ) indicates a visual transformation

parameterized by θ, and l is a distribution matching objective function such as MMD loss [29] and
GAN-based loss functions [16, 30, 31]. In this work, we employ WGAN-GP [31], which expedites
the optimization of the generator as well as enforce the Lipschitz constraint by using the gradient
penalty not to fail to converge.

3.2 Automating transformation policies

A complementary set of current visual transformations. We train the network that maps a
known distribution to the desired distribution, i.e., the outputs of this network follow pθ. To approxi-
mate this distribution pθ, we use a sampling procedure. Specifically, we feed random vectors sampled
from the known distribution to the mapping network to produce a number of output samples, which
are then aggregated to form a histogram of values. Based on this histogram, its complementary qθ can
be obtained by subtracting each histogram value from the peak histogram value and normalizing it.

Transformation policies for self-supervised tasks. We consider two policies for choosing a non-
conflicting pretext task: manual and automated policy. In the manual policy, we sample the transfor-
mation instance from the parameter ranges where pθ is 0 or low value. For example, suppose that
Ic contains the rotated images from 0 to 120 degrees. We can sample the transformation instance
for the pretext task from 120 to 360 degrees manually. In the automated policy, the transformation
instance is sampled from the constructed complementary distribution qθ. To sample a value following
a specified distribution, we exploit the inverse transform sampling method, which is a well-known
method for pseudo-random number sampling. First, the CDF of qθ is obtained. Then, we obtain the
transformation instances by mapping the samples from the uniform distribution U(0, 1) to the inverse
of the CDF. The obtained transformation instances can then be used for the pretext task.
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Figure 2: (a) The ground-truth distribution of Transformed MNIST. (b) Histogram of output values
from the mapping network. (c) Experimental results of the pretext task parameters in the left column.
Once the representation with the pretext task is learned, the classifier is trained with supervised
learning using the fixed representations. We denote this classification accuracy by Sup acc.

4 Experiments

We demonstrate that our framework can estimate the distribution of visual transformations present
in the dataset. Experimental details are in Appendix A. First, we estimated the distribution on
Transformed MNIST, which is constructed by applying various affine transformations to the original
MNIST [17]. Fig. 2a illustrates the ground-truth distribution of the transformations present in
Transformed MNIST. Note that the rotation, translation, and scaling operations have their own units
of measurements, but we normalize them for better visualization and more stable training: [−1, 1].
For Transformed MNIST, as shown in Fig. 2b, the obtained histogram is similar to the ground truth
distribution. Based on this, we can design the pretext tasks for given dataset. In particular, we define
two types of self-supervision tasks. The first type is the transformation instance from pθ, and the
second type is that from qθ, i.e., complementary to pθ. In Fig. 2c, we compared these two types
of pretext tasks where R, T, and S indicate rotation, translation, and scaling, respectively. Once the
self-supervised network is trained with pretext tasks, the representations are used for downstream
tasks (see Appendix B). For the rotation case, the representations learned with the task classifying 0
and 90 degrees encounter the transformation conflict (we can find 90 degree has high probability from
Fig. 2a) and result in performance degradation compared to the task of 0 and 180 degree. Especially,
in the case of translation and scaling, the performance gap becomes bigger. The results demonstrate
that complementary pretext tasks lead to learn useful representation for downstream task.
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Figure 3: Experimental results on SVHN.

Next, we applied our automated policy to the real
dataset. We plot the histogram of transformation pa-
rameters for the SVHN dataset in Fig. 3. In VTSS [13],
they described the results of pretext tasks by using
prior knowledge or manual inspection on the dataset.
In our case, we analyze the results based on the esti-
mated distribution beyond the prior knowledge avail-
able for the dataset and define effective pretext tasks
even significant degree of transformations already exist
in the dataset. In VTSS, they observed that the pretext
task based on scale-based transformations leads poor
performance for SVHN. This is because the SVHN
dataset has some degrees of scale variation (refer the
histogram in Fig. 3). More experimental results using
other datasets are described in Appendix D.

5 Conclusion
We propose a framework to automatically estimate the distribution of visual transformations present
in the dataset. This enables efficiently creating pretext tasks that are not depicted in the dataset. We
show that the representations learned from this task are more informative on downstream classification
scenarios compared with those from the conflicting task.
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A Distribution estimation for visual transformations

A.1 Implementation details

Our framework to estimate the distribution of visual transformations consists of two networks:
a generator and a discriminator. The generator is constructed with three linear layers with 128
dimensional output except that the last layer is 6 dimensional output. We used LeakyReLU with 0.2
slope for the first two layers, and the last layer has the tangent hyperbolic function to produce values
between −1 and 1. The generator takes 10 dimensional inputs sampled from Gaussian distribution,
and outputs 6 parameters for affine transformation (rotation, scale, and translation). We found that the
affine transformation parameters can be accurately estimated with two generators: i.e., the first one
for the scale parameter and the other one for remaining five parameters. Similar with the affine case,
the color transformation can be generated from 10 dimensional inputs (See the details in Appendix C).
In this case, the generator outputs four dimensional parameters: brightness, saturation, contrast, and
hue. And, the network architecture is the same with the affine transformation case, but the output
dimension is four. We adopted a simple discriminator that has three linear layers with the LeakyReLU
function. The input size of the first layer depends on the image size, and the output dimensions of the
three layers are respectively 512, 256, and 1. The discriminator output represents a fake or a real, i.e.,
an image from the given dataset (real) or a transformed image using the generator (fake).

We trained these networks with the aid of WGAN-GP [31]. We adopted the basic settings of WGAN-
GP: λ = 10, ncritic = 5, α = 0.0001, β1 = 0, and β2 = 0.9. With the batch size of 10 and learning
rate of 5e − 5, we trained the network for 500, 000 iterations, which took 6 hours in our single
NVIDIA TITAN Xp GPU. Fig. 4 illustrates three histograms obtained at different iteration points,
and we observed that there is no big difference after 500,000 iterations.
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Figure 4: The histograms obtained from the outputs of the mapping network trained using Trans-
formed MNIST at (a) 100,000, (b) 500,000, and (c) 1,000,000 iterations.

A.2 The method to reduce the artifact of a transformed image

Through adversarial learning, the discriminator is trained to distinguish the original images in the
dataset from the images transformed by the generator given the reference subset. Our objective is
to train the generator to deceive the discriminator such that the transformed images have a similar
distribution with the original images. However, the discriminator may easily identify the generated
images when they have artifacts like zero padding. These artifacts cause the network to learn an
undesired property. For example, assume that the input image contains a dog of 45 degree rotated,
and the objective is to find the amount of the rotation by generating a similar image using an upright
dog image. However, when the image is rotated in the generator, the four corners are zero-padded,
and hence it provides a crucial hint for the discriminator. Often, it leads to converge to a meaningless
distribution which is not our objective. To mitigate this problem, we perform transformations first
which is followed by a center-crop. For example, given a 32x32 image, a transformation is applied,
and then the 24x24 image is obtained by the center-crop, which can cover 8 pixel shifts with no zero
padding. For 256x256 image, the resulting image size is 196x196 where these two numbers were
empirically selected through multiple trials. With this procedure, we can accurately estimate the
distribution of visual transformations without an artifact effect.
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B Self-supervised learning for downstream tasks

B.1 Implementation details

We used the NIN architecture [32] as the backbone feature extraction network to learn the representa-
tions for downstream tasks. The NIN consists of four convolutional blocks, and each block contains
three convolutional layers. Convolution, batch normalization, and ReLU are sequentially placed in a
single convolutional layer. In training a pretext task for rotation, translation, and scaling categories,
the classifier of a single linear layer is added after global average pooling. We used SGD with the
batch size of 128, momentum of 0.9, weight decay of 5e− 4, and learning rate of 0.1. We dropped
the learning rates by a factor of 5 after epochs 60, 120, and 160. We trained the network in total for
200 epochs. For a fair comparison among several pretext tasks, we used the same training procedure.

To evaluate the representation learned by self-supervision, a classifier is trained using the learned
features. Specifically, in our experiments on Fashion MNIST [18], SVHN [19], CIFAR-10 [20], and
CIFAR-100 [20], we followed the existing evaluation protocols [2, 13] by adding a classifier on top of
the second convolutional block. The classifier consists of a single conv block, global average pooling,
and one linear layer. Here, the conv block is the same with the conv3 in NIN architecture. We used
SGD with batch size 128, momentum 0.9, weight decay 5e− 4, and learning rate of 0.1, which is
dropped by a factor of 5 after epochs 35, 70, and 85. We trained the network in total for 100 epochs.

B.2 Details of constructing pretext tasks

We introduce four pretext tasks, R, T, S, and RST, which indicate rotation, translation, scaling, and
the combination of all, respectively. For the rotation case, the unit is the rotation degree. Translation
and scaling units are the ratio of shift amount to the image size and the scaling ratio. Note that the
translation task involves 5-way classification: left and right shift along with x and y axis, and 0
translation.

When constructing a pretext task of rotation, translation, and scaling, we also encounter the same
artifact problem. The artifact induced by the transformation for a pretext task would be a big hint for
the network, and hence the useful representation for downstream tasks may not be obtained. With
this reason, we consider the pretext tasks of each transformation as follows: 1) For rotation, we use
90, 180, 270, and 360 degree which do not incur the zero-padding, 2) For translation and scaling, we
perform the center crop depending on the task parameter: e.g. when we define the translation task of
3 pixels in 32x32 image, we crop the center image of 26x26.

C Visual transformation

C.1 Parameterize geometric transformation

We describe how to parameterize a distribution over the set of visual transformations, particularly
affine transformations. This discussion can be extended to projective and spline transformations as
well. For the affine transformation, we include translation, scaling, similarity, reflection, rotation, and
shear. The affine matrix is parameterized as follows:

t =

[
a11 a12 a13
a21 a22 a23
0 0 1

]
, where a11, a12, ..., a23 ∈ θ. (1)

These parameters are sampled from pθ, and this matrix is applied to the coordinate system. We
adapt Spatial Transformer Network [33] allowing loss gradients to flow back to the sampling grid
coordinates as well as to the input image. For example, in case of affine transformation, the sampling
grid is result of warping the regular grid with an affine matrix, as in (1). If we use a bilinear sampling
kernel to map the output pixel value, the output image V is obtained as follows:

Oci =

H∑
n

W∑
m

Icnmmax(0, 1− |usi −m|)max(0, 1− |vsi − n|), (2)

where Oci indicates the output value for pixel i at location (uti, v
t
i) of channel c, and (uti, v

t
i) are the

target coordinates of the regular grid. Icnm is the value at location (n,m) of the input image with
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height H and width W , and (usi , v
s
i ) indicates the spatial location of the input corresponding to the

output coordinate through the sampling grid. We can define the gradients with respect to Icnm and
(usi , v

s
i ) such that the backpropagation of the loss can be flowed through this sampling mechanism.

C.2 Parameterize color transformation

In all previous experiments, we considered the transformations of rotation, scale, and translation. This
section will describe how we can parameterize the color transformation. Specifically, we consider
changing the brightness, saturation, contrast, and hue of an image. We introduce learnable parameters
for these transformations and train the mapping network such that each parameter represents the
transformation distribution of the dataset.

First, the brightness change can be simply expressed as follows:

xbrt = xαbrt, (3)

where αbrt is a learnable scale factor. Second, we can change the saturation of x by using a linear
combination of the original image x and the gray-scaled version of the image xgray as follows:

xsat = xαsat + xgray(1− αsat), and xgray = 0.299xr + 0.587xg + 0.114xb, (4)

where xr, xg , and xb indicate three color channels of x. The scale factor αsat is in the range of [0, 1].
And third, we can change the contrast of x by calculating a linear combination of x and the average
of xgray over all spatial dimensions as follows:

xcon = xαcon +mean(xgray)(1− αcon), (5)

where αcon is a scale parameter. Finally, we resort to a linear approximation for the hue change in the
YIQ color space. We firstly convert RGB to YIQ, and then apply rotation to the IQ components. The
transformation from RGB to YIQ is denoted by TY IQ, and we can obtain the following expression:[

Y
I
Q

]
= TY IQ

[
R
G
B

]
, where TY IQ =

[
0.299 0.587 0.114
0.596 −0.275 −0.321
0.212 −0.523 0.311

]
. (6)

In the YIQ color space, we can change the hue of an image by rotating the IQ components with a
rotation matrix:

Rθhue =

[
1 0 0
0 cosθhue −sinθhue
0 sinθhue cosθhue

]
, (7)

where θhue = 2παhue, and αhue is a learnable parameter. In summary, the hue change can be
expressed by the following matrix multiplication:

xhue = TRGBRθhueTY IQx, (8)

where TRGB is the inverse matrix of TY IQ. Using the procedure, we can employ learnable parameters
for color transformation, and hence we can estimate the distribution of color transformations present
in the dataset.

D Experimental results

D.1 Distribution estimation
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Figure 5: Experimental results on Fashion MNIST.

We plot the histogram of transformation param-
eters for Fashion MNIST [18] in Fig. 5. As
illustrated in Fig. 5, the Fashion MNIST dataset
consists of well-aligned images, i.e., almost no
transformation is present. This suggests that the
network can learn powerful representations with
pretext tasks constructed by any visual transfor-
mation.

Furthermore, we illustrated the histograms of
output values obtained from the mapping net-
work on four visual recognition datasets, CropDisease [34], EuroSAT [35], ISIC2018 [36, 37], and
ChestX [38].
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(a) CropDisease
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(b) EuroSAT
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(c) ISIC2018
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(d) ChestX

Figure 6: The estimated distributions of visual transformation on CD-FSL benchmarks.

Even when the images are big, we found that the mapping network can represent the transformation
distribution well as shown in Fig 6. The EuroSAT and ISIC2018 dataset have the rotation transforma-
tion almost over the entire range, [−π, π]. Visually checking the image samples, we can find the two
datasets already contain various rotated images.

D.2 Comparison with other methods on downstream tasks

FMNIST SVHN CIFAR-10 CIFAR-100
RotNet 91.94 91.29 89.15 63.62
VTSS 92.18 91.72 89.58 64.87
Ours 93.22 94.75 89.58 64.00

(a) Comparison with other methods.
FMNIST SVHN CIFAR-10 CIFAR-100

Baseline 91.63 91.72 86.32 60.79
Ours 93.22 94.75 87.01 62.48

(b) Comparison with our baselines.

Table 1: Performance comparison on downstream
tasks.

To compare with RotNet [2] and VTSS [13], we
set hyper-parameters with the same condition as
others (using horizontal flip for data augmenta-
tion). We reported the accuracy in Table 1a.

We want to show that the pretext tasks selected
by our estimated distribution can force the net-
work to learn more meaningful representations
than the manually selected one. In Table 1b,we
define the pretext task, RST, which is the com-
bined pretext task of three types of visual trans-
formations. Baseline selects RST manually and
ours defines RST based on the estimated distri-
bution. We use rotation with 0, 90, 180, and 270,
translation with 0.1, 0.1, and scaling x1, x1.14,
x1.33 for the baseline RST while we define the pretext task carefully based on estimated distribution.
Note that we do not use data augmentation technique to show the effectiveness of each pretext task
separately.

E Discussion

E.1 Extension to contrastive loss

We consider a contrastive learning framework based on SimCLR [4]. We observed that the con-
trastive loss with the augmented versions appropriate to the target dataset helps the network to learn
generalizable representations even when the domain gap between source and target is large, and
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target data is scarce. Intuitively, this indicates proper pretext tasks for contrastive loss functions are
effective mechanisms to derive meaningful representations for downstream tasks.

We apply the proposed automated transformation policy to generating augmented versions used
for contrastive learning. As such, we retrain the base network, ResNet-50 [39], with the standard
supervised loss on ImageNet [40], then fine-tune the base network, the added classifier, and the
projector on the target dataset with both cross-entropy and contrastive losses. Specifically, we use
supervised contrastive loss function [41] with the SimCLR [4] framework. It is to be noted that
supervised contrastive loss function builds on the contrastive self-supervised literature by leveraging
label information. We conduct experiments on cross-domain benchmark datasets (CropDisease [34],
EuroSAT [35], ISIC2018 [36, 37], and ChestX [38]) where we split the total dataset such that 5%
was used for training while the remaining was used for testing.

We compare four methods: fine-tuning the network using (a) cross-entropy loss (Baseline) and
with additional contrastive loss of (b) random rotation from -180 to 180 (SimCLR with Rot.), (c)
random affine transformations, which contain rotation from -180 to 180, translation from -0.5 to
0.5, and scaling from 0.5 to 1.5 (SimCLR with Aff.) and (d) automated transformation policies
within the same range of (c) and obtained from the target dataset (SimCLR with ATP). Table 3
shows the results of fine-tuning with the contrastive loss function. We found that some pretext tasks,
i.e., data augmentations, are not helpful to the target tasks as pointed out by [42]. Our automated
transformation policies for contrastive learning leads to better performance than the naive approach
of using random augmentation. It shows that not only types of transformations, e.g., color or spatial
transformation, but also the degree of transformations, e.g., 30 or 60 degrees rotation impact the
performance significantly in contrastive learning.

Method ChestX ISIC EuroSAT CropDiseases
Baseline 41.16 67.00 96.35 96.43

+ SimCLR with Rot. 38.24 68.43 97.57 97.48
+ SimCLR with Aff. 40.65 68.97 97.66 97.41
+ SimCLR with ATP 42.33 72.97 97.72 97.60

Table 3: Effect of fine-tuning on cross-domain benchmark datasets. Rot., Aff., and ATP indicate
random rotation, random affine transformation, and automated transformation policies, respectively.

E.2 Large-scale experiment

In the future, we will conduct experiments with pretraining on a large-scale dataset and transfer
to other datasets for evaluation. Since the large-scale dataset consists of images following a com-
plex distribution, the manual selection of pretext tasks cannot be the best one and it may produce
transformation conflict. Still, we believe that our policies will work well on a large-scale dataset.
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