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Abstract

Despite the success of a number of recent techniques for visual self-supervised
deep learning, there has been limited investigation into the representations that
are ultimately learned. By leveraging recent advances in the comparison of
neural representations, we explore in this direction by comparing a contrastive
self-supervised algorithm to supervision for simple image data in a common
architecture. We nd that the methods learn similar intermediate representations
through dissimilar means, and that the representations diverge rapidly in the nal
few layers. We investigate this divergence, nding that these layers strongly t
to their distinct learning objectives. We also nd that the contrastive objective
implicitly ts the supervised objective in intermediate layers, but that the reverse
is not true. Our work particularly highlights the importance of the learned
intermediate representations, and raises critical questions for auxiliary task design.

1 Introduction

In the last two decades, progress in deep learning for visual tasks has primarily been driven by
training convolutional neural networks (CNNs) [1, 2, 3, 4, 5, 6, 7] on large labelled datasets via
supervised learning (SL). More recently, self-supervised learning (SSL) algorithms have started to
close the performance gap [8, 9, 10, 11, 12, 13, 14]. The success of these visual SSL algorithms raises
important questions from a representation learning perspective: how are SSL methods building
competitive respresentations without access to class labels? Do learned representations dier
between SL and SSL? If so, can/should we encourage them to be similar? Do dierent SSL objectives
learn qualitatively dierent representations? In this work, we begin to shed light in this direction
by comparing the representations of CIFAR-10 (C10) induced in a ResNet-50 (R50) architecture by
SL against those induced by SimCLR, a prominent contrastive SSL algorithm. We nd that:

• Post-residual representations are similar across methods, however residual (block-interior)
representations are dissimilar; similar structure is recovered by solving dierent problems.

• Initial residual layer representations are similar, indicating a shared set of primitives.
• The methods strongly t to their distinct objectives in the nal few layers, where SimCLR
learns augmentation invariance and SL ts to the class structure.

• SL does not implicitly learn augmentation invariance, but learning to become invariant to
SimCLR’s augmentations implicitly ts the class structure and induces linear separability.

• The representational structures rapidly diverge in the nal layers, suggesting that Sim-
CLR’s performance stems from class-informative intermediate representations, rather than
implicit structural agreement between learned solutions to the SL and SimCLR objectives.
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Figure 1: CKA between layers of R50 networks trained via SimCLR. We show all, odd, and even
layers in the left, middle, and right plots respectively. In contrast to prior work, we compare across
dierent initializations as a sanity check for solution stability.

2 Background

Multi-view visual SSL A number of recent SSL algorithms for visual data focus on a view
invariance auxiliary objective, where the model learns to identify dierent views of the same
input image and distinguish views of dierent images. Here, we focus on SimCLR [11] as a step
towards understanding contrastive self-supervised representation learning. We leave the analysis
of alternative visual SSL methods for future work.

SimCLR SimCLR learns representations by contrasting dierent views v𝑡 (x), v𝑡 ′ (x) of a single
image x to views v𝑡 ′′ (x−), v𝑡 ′′′ (x−) of other images, where we sample from a family of augmenta-
tions 𝑡, 𝑡 ′, 𝑡 ′′, 𝑡 ′′′ ∼ T . Views are constructed through application: v𝑡 (x) = (𝑔θ ◦ 𝑓θ ◦ 𝑡) (x), where
𝑓θ is the parametric backbone, typically a CNN, and 𝑔θ is the Noise Contrastive Estimation (NCE)
head, typically an MLP. SimCLR’s objective is then to minimize InfoNCE [11, 15]:

L (𝑖, 𝑗)
InfoNCE = − log

exp(sim(v𝑖 , v𝑗 )/𝜏)∑2𝑁
𝑘=1 1[𝑘≠𝑖 ] exp(sim(v𝑖 , v𝑘 )/𝜏)

, (1)

where v𝑖 = v𝑡 (x), v𝑗 = v𝑡 ′ (x) are dierent views of the same image, v𝑘 = v𝑡 ′′ (x(𝑘)
− ) are dierent

views of dierent images, 𝜏 is the temperature, and sim(u, v) = uTv/‖u‖2 ‖v‖2 is cosine similarity.

Comparing neural representation spaces Comparing neural representations is challenging
due to their distributed nature, potential misalignment, and high dimensionality. Prior work has
demonstrated the utility of Centered Kernel Alignment (CKA) as a similarity index which elegantly
addresses these challenges [16], enabling the analysis of a variety of neural architectures [16, 17, 18].

Let X ∈ R𝑚×𝑝1 , Y ∈ R𝑚×𝑝2 be 𝑝1 and 𝑝2 dimensional representation matrices whose rows are
aligned1. Let K = XXT, L = Y Y T be the corresponding Gram matrices. The CKA value is the
normalized Hilbert-Schmidt Independence Criterion (HSIC) [19] of these Gram matrices:

CKA(K,L) = HSIC(K,L)√︁
HSIC(K,K)HSIC(L,L)

, (2)

We use the linear kernel due to its strong empirical performance and computational eciency,
simplifying the calculation of HSIC to (𝑚2 − 1)HSIC(K,L) = Tr(KHLH) = vec(K ′) · vec(L′),
where K ′ = HKH , L′ = HLH , andH = I𝑚 − 1

𝑚
11T is the centering matrix.

Experimental setup We use a R50 [3] backbone for each model. For SimCLR, we train as
specied in Chen et al. [11]. We group representations into residual (odd) and post-residual (even)
layers, in line with the analysis of Kornblith et al. [16]. Further details are outlined in Appendix A.

1The 𝑖th row in X and Y correspond to the 𝑖th sample for all 𝑖 ∈ 1, . . . ,𝑚.
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Figure 2: (Left/Middle) CKA between the odd/even layers of networks trained by SimCLR and SL.
For the evens, we mark the most similar SL layer for each SimCLR layer with a white dot. (Right)
For each even layer in SimCLR, the similarity to its corresponding supervised layer (diag), and to
the most similar supervised layer (max). We also denote the block groups (BG) (see Appendix A.1).

3 Results

3.1 Internal representational structure of SimCLR

We begin by using CKA to study the internal representational similarity of SimCLR in Figure 1.
This result mirrors the supervised analysis of Kornblith et al. [16], indicating that SL and SimCLR
utilize the residual architecture in a similar way, with residual blocks decoupling from each other.
For completeness, we replicate the SL result under our experimental setup in Appendix B.

3.2 Comparing early and intermediate SimCLR and supervised representations

Next, we compare the representational structures induced by SimCLR and SL. In Figure 2, we plot
the odd and even layer CKA matrices across the learning methods, we observe:

Common primitives Residual representations are similar in the very early layers, perhaps due
to both objectives inducing common primitives like Gabor lters [20].

Dissimilar residual (Odd) Beyond these initial layers, similarity between the residual represen-
tations substantially reduces, indicating that each method learns residuals that operate on the input
in qualitatively dierent ways – likely a reection of their distinct learning objectives.

Similar post-residual (Even) Despite the dissimilarity of residuals, there is high similarity across
the diagonal in the post-residual layers, indicating that the representations accumulated remain
similar across learning methods; similar representations are learned in a dissimilar way.

Stalling behaviour Finally, SimCLR appears to “stall” upon entering a new BG, remaining more
similar to previous supervised layers, before “catching up” to the diagonal. This may be induced by
SimCLR’s strong augmentations, requiring a broader distribution to be compressed after each BG.

3.3 Late layer representational dissimilarity of SimCLR and supervised learning

Figure 2 (right) indicates that the representational structures learned by SimCLR and SL rapidly
diverge in the nal block group. Here, we analyze this behaviour.

Linear separability of classes We rst investigate the eect that this divergence has on perfor-
mance. We compute the accuracy of linear probes tted at each layer in the SimCLR and supervised
networks (Figure 3 (left)). We nd a monotonic increase in linear separability of the classes for both
methods. This suggests that despite the divergence in later layers, both representational structures
continue to become more linearly separable with respect to the classes. This raises the question: if
the structures are diverging, but both are becoming more separable, what exactly is being learned?
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Figure 3: (Left) Linear probe accuracies for learned representations in the SimCLR and SL models.
(Middle) CKA between representations of dierently augmented datasets at corresponding layers.
(Right) CKA of learned representations with the class representations. We plot post-residual (even)
layers only, denoting the block groups (BG) and NCE head (Head) where appropriate.

Augmentation invariance In Figure 3 (middle), we inspect what happens in the layers of
both networks with respect to SimCLR’s augmentation invariance objective. Here, we augment
each sample in the C10 test dataset with two augmentations sampled from the augmentation
distribution used during training2, creating pairs of augmented test datasets. We measure the
degree of invariance at each layer by plotting the CKA value between the representations of
these augmented datasets. We observe that SimCLR’s representations become more augmentation
invariant with depth, increasingly so in the nal few layers of the network. This contrasts with SL
where the representations start out similar under (weaker) augmentations, then diverge until the nal
block group, where we see a small increase in CKA – presumably due to classication. This result
tells us (1) SimCLR does learn substantial augmentation invariance and (2) SL does not implicitly
learn augmentation invariant representations. This is perhaps surprising from the perspective of
classication as a form of augmentation invariance where the augmentation distribution is the
class-conditioned data distribution. Full CKA heatmaps are presented in Appendix C.

Mapping to the classes Next we look at the SL objective which, from a representation learning
perspective, maps inputs to their assigned vertices on the simplex in the class representation space.
In Figure 3 (right), we plot the CKA similarity between the class representations and the learned
representations in the layers of the SimCLR and supervised networks. We observe a monotonic
increase in CKA with the class structure for both methods throughout the backbone, oering insight
into the increasing linear separability. It is however clear that SL accelerates much more rapidly
towards the class structure in the nal block group due to explicit optimization – likely explaining
the divergence of SL and SimCLR in Figure 2. We also observe a decrease in similarity to the class
structure after the rst layer of the NCE head, perhaps revealing its role as a buer which allows
the backbone to learn richer class-informative features rather than immediately t to InfoNCE.

4 Conclusion

We have shown the utility of CKA for comparing across learning methods, rather than architectures.
Using this approach, we have demonstrated that SimCLR representations are similar to those
of supervised learning in their intermediate layers. Interestingly, we see divergence in the nal
few layers where each methods ts to its own objectives. Here, SimCLR learns augmentation
invariance, contrasting with supervised learning, which instead is more strongly drawn to align
with the labelled class structure. This suggests that it is not similarity of the nal representational
structures that facilitates SimCLR’s strong downstream performance. Rather, it is the similarity of
the intermediate representations, i.e. the class-informative features that are learned along the way.

These ndings raise important questions for auxiliary task design: Can we build label-free tasks
that share more intermediate features with supervised learning? Should we include inductive biases
that look like “mapping to the simplex”, e.g. orthogonality? Is mapping to the simplex desirable?
Or are self-supervised representations more robust in a multi-task/multi-distribution setting? We
leave these questions for future work.

2ImageNet augmentations for SL, SimCLR augmentations for SimCLR.
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A Experimental Setup

Experimental setup We choose the same ResNet50 architecture [3] for SimCLR and the super-
vised model. We follow the training procedure described in Chen et al. [11]: all models use the LARS
optimizer [21] with linear warmup [22] and a single cycle cosine annealed learning rate schedule
[22, 23]. SimCLR models are trained for 1300 epochs with a batch size of 4096 under SimCLR
augmentations [11], whereas our supervised models are trained for 300 epochs using a batch size of
8192 under standard ImageNet augmentations3. For SimCLR, we implement the original version of
Chen et al. [11], where in particular the NCE head is a 3-layer MLP.

For each learning method, we train from 3 dierent random initializations, resulting in 6 models.
Models are trained on the training set of CIFAR-10 (50,000 samples) [24]. Representations are
produced on the test set of CIFAR-10 (10,000 samples) under each model’s corresponding test
augmentation family. Representations are attened, producing a single vector for each sample.

A.1 Even and Odd representations

For each bottleneck layer, we extract the following representations:

class Bottleneck(nn.Module):
# Other definitions

def forward(self, x: Tensor) -> Tensor:
identity = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)

out = self.conv3(out)
ODD_REPRESENTATIONS[i] = out = self.bn3(out)

if self.downsample is not None:
identity = self.downsample(x)

out += identity.
EVEN_REPRESENTATIONS[i] = out = self.relu(out)

return out

i.e. two representations per bottleneck.

A ResNet50 is built out of 4 block groups, each subsequent group increasing dimensionality (see
Table 1). The total number of bottleneck layers across all groups is 16 = 3 + 4 + 6 + 3, resulting in 16
odd representations and 16 even representations that we use in our analysis.

Table 1: The lter properties and bottleneck multiplicities in each BG of a ResNet50.
Group Name Number of Bottlenecks Filters in each Bottleneck

BG1 3 (1 × 1, 64), (3 × 3, 64), (1 × 1, 256)
BG2 4 (1 × 1, 128), (3 × 3, 128), (1 × 1, 512)
BG3 6 (1 × 1, 256), (3 × 3, 256), (1 × 1, 1024)
BG4 3 (1 × 1, 512), (3 × 3, 512), (1 × 1, 2048)

3RandomResizedCrop(224), RandomHorizontalFlip and channel-wise standardisation.
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Figure 4: CKA between all layers of ResNet-50 networks trained via supervision. We plot all layers
in the left column, and even/odd layers on the middle/right.

B Internal representational structure for supervised learning

Here, we replicate the results of Kornblith et al. [16] in our experimental setup. In particular, in
Figure 4 we use CKA to compare the learned representations of ResNet-50 architectures trained
via supervised learning, as specied in Appendix A. We note that in contrast to their work, we
compare across dierent initializations in order to check for solution stability.

Corroborating their ndings, we observe high similarity across neighbouring post-residual (even)
layers in the network, and greater dissimilarity between residual (odd) layers, which largely appear
similar only to themselves. The similarity of even layers is explained by the residual connections
propagating representations through the network. The dissimilarity of odd layers suggests that each
sequential block performs a distinct modication to this propagated residual representation. The
similarity within block groups (i.e. at the same dimensionality) is higher than across block groups
for all layers. We further note that the results for SimCLR (Figure 1) mirrors that of supervised
learning, except there appears to be even greater disagreement across block groups.

C Full Augmentation Invariance CKA Heatmaps

In Figure 5 we provide the all-layers CKA comparisons of the representations of dierently aug-
mented test datasets in the same model. The diagonals of Figure 5 correspond to Figure 3 (middle).
The augmentation invariance of the supervised model gradually fades starting from the bottom left
corner, suggesting that it is initially due to the residual connections and weak augmentation strategy.
The SimCLR plot is striking: substantial (but not total) invariance is learned in the NCE head, and
this backpropagates into the nal few layers of the backbone. However, the representations show
limited robustness to augmentation right up until these last few layers of the network.
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Figure 5: We apply the method-specic training augmentations to the CIFAR-10 test dataset and
plot the CKA of the representations as they propagate through the supervised and SimCLR models.
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