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Abstract

Self-supervised contrastive learning is an emerging field due to its power in pro-
viding good data representations. Such learning paradigm widely adopts the In-
foNCE loss, which is closely connected with maximizing the mutual information.
In this work, we propose the f -Mutual Information Contrastive Learning frame-
work (f -MICL), which directly maximizes the f -divergence-based generalization
of mutual information. We theoretically prove that, with mild assumptions, our
f -MICL naturally attains the alignment for positive pairs and the uniformity for
data representations, the two main factors for the success of contrastive learning.
We further provide theoretical guidance on designing the similarity function and
choosing the effective f -divergences for f -MICL. Using several benchmark tasks,
we empirically verify that our novel method outperforms or performs on par with
state-of-the-art strategies.

1 Introduction

Contrastive learning has attracted a surge of attention recently due to its success in learning in-
formative representation for image recognition, natural language understanding, and reinforcement
learning [Chen et al., 2020, He et al., 2020, Logeswaran and Lee, 2018, Srinivas et al., 2020]. Such
learning paradigm is fully unsupervised by encouraging the contrastiveness between similar and
dissimilar sample pairs. Specifically, the feature embeddings of similar sample pairs are expected
to be close while those of dissimilar sample pairs are expected to be far apart. To attain this goal,
a softmax cross-entropy loss, a.k.a. InfoNCE, has been widely used [Wu et al., 2018, van den Oord
et al., 2018, Chen et al., 2020, Hénaff et al., 2020, He et al., 2020], which aims to maximize the
probability of picking a similar sample pair among a batch of sample pairs.

InfoNCE can be interpreted as a lower bound of the mutual information (MI) between two views of
data samples [van den Oord et al., 2018, Bachman et al., 2019, Tian et al., 2020a, Tschannen et al.,
2020]. This explanation is consistent with the well-known “InfoMax principle” [Linsker, 1988].
Nevertheless, it has been shown that maximizing a tighter bound on the MI can result in worse
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representations [Tschannen et al., 2020]; and reducing the MI between views while only keeping
task-relevant information can improve the downstream performance [Tian et al., 2020b]. These
observations suggest that maximizing the MI may be insufficient in contrastive learning and thus a
better objective design is required.

To attain this goal, we propose a novel contrastive learning framework, coined as f -MICL. In a
nutshell, leveraging the fact that MI can be formulated as the Kullback–Leibler (KL) divergence
between the joint distribution and the product of the marginal distributions, we replace the KL di-
vergence with the general f -divergence family [Ali and Silvey, 1966, Csiszár, 1967]. Doing so, we
obtain a generalization of mutual information, called f -mutual information [f -MI, Csiszár, 1967].
Notably, by maximizing a lower bound of f -mutual information we naturally decompose the objec-
tive function into two terms, which correspond to the properties of the alignment and the uniformity.
Such characterization has been revealed in Wang and Isola [2020, Theorem 1] for the InfoNCE loss.
Compared with Wang and Isola [2020], our result applies to a wide range of the f -divergence fam-
ily, and it does not rely on the limit of an infinite number of dissimilar samples. This allows us to
explore the space of f -MI and improve the performance of InfoNCE-based contrastive learning.

The similarity function is crucial for the evaluation of the contrastiveness of similar and dissimilar
sample pairs. Commonly used similarity functions include the cosine similarity [Chen et al., 2020,
He et al., 2020], the bilinear functions [van den Oord et al., 2018, Tian et al., 2020a, Hénaff et al.,
2020], and the neural network based scores [Hjelm et al., 2018]. While most aforementioned sim-
ilarity functions for contrastive learning are heuristic and pre-designed, in this work, we provide a
principled way to design the similarity function. By assuming that the joint feature distribution of
two similar samples is proportional to a Gaussian kernel, we derive an optimal similarity function
for practical use, which resembles the well-known radial basis functions [Powell, 1987]. With the
optimization of our f -mutual information objective the positive pairs are aligned with each other
and the data representations are uniformly distributed.

2 f -Mutual Information Contrastive Learning

In this work we propose the f -mutual information framework for contrastive learning. First recall
the f -mutual information (f -MI) between a pair of random variables X and Y :

Definition 1 (f -mutual information, Csiszár 1967). Consider a pair of random variables (X,Y )
with density function p(x, y). The f -mutual information If between X and Y is defined as

If (X;Y ) := Df (p(x, y)‖p(x)p(y)) =

∫
f
(

p(x,y)
p(x)p(y)

)
p(x)p(y) · dλ(x, y), (1)

where f : R+ → R is (closed) convex with f(1) = 0, and recall that p(x) and p(y) are the marginal
densities of p(x, y), whereas λ is a dominating measure (e.g. Lebesgue).

Common choices of f can be found in Table 2 (Appendix A). It is well-known that f -mutual
information is non-negative and symmetric. Nguyen et al. [2010] derived a variational method
by maximizing the dual problem: If (X;Y ) ≥ supT∈T if (X;Y ) := E(x,y)∼ppos [T (x, y)] −
E(x,y)∼pdata⊗pdata [f

∗(T (x, y))], where f∗(t) := supx∈R+
(xt − f(x)) is the (monotone) Fenchel

conjugate of f , and is always monotonically increasing. Here T is a class of functions T :
supp(pdata) × supp(pdata) → dom f∗. Following Chen et al. [2020], we design the structure of
function T as: T (x, y) := k(g(x), g(y)), where ‖g(x)‖ = 1 for any sample x. The function g pro-
duces a d-dimensional normalized feature encoding on the hypersphere Sd−1 and k is a similarity
function that measures the similarity between two embeddings g(x) and g(y). With the above inter-
pretation, we can rewrite our objective of f -mutual information:

sup
g∈G,k∈K

if (X;Y ) := E(x,y)∼ppos [k(g(x), g(y))]− E(x,y)∼pdata⊗pdata [f
∗(k(g(x), g(y)))], (2)

where G andK are the function classes of the feature encoder g and the similarity function k. We can
treat the first term as the similarity score between positive pairs in the feature space, and the second
term as the similarity score between two random samples, a.k.a. negative pairs, in the feature space.
As f∗ is monotonically increasing, maximizing f -MI is equivalent to simultaneously maximizing
the similarity between positive pairs and minimizing the similarity between negative pairs.
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Algorithm 1: f -mutual information contrastive learning (f -MICL)

Input: batch size N , function f , weighting parameter α, constant µ (in Gσ), variance σ2,
optimizer

1 for each batch {zi}Ni=1 do
2 forall k ∈ [1, N ] do
3 randomly sample two augmentation functions t1, t2
4 yk ← t1(zk), xk ← t2(zk)

5 compute if = 1
N

∑N
i=1

[
f ′ ◦Gσ(‖xgi − y

g
i ‖2)

]
− α

N(N−1)
∑
i 6=j f

∗ ◦ f ′ ◦Gσ(‖xgi − x
g
j‖2)

6 update g by taking a step to maximizing if using the optimizer

2.1 Optimized similarity function and implementation

We now study how to search for the optimal similarity function k. For the ease of notations, from
now on we define xg := g(x) and yg := g(y). Suppose (x, y) ∼ ppos, then we denote pgpos as the
distribution of (xg, yg), and pgdata as the marginal feature distribution of xg or yg . The corresponding
density functions are written as pg(xg), pg(yg) and pg(xg, yg). Recall the following result:
Lemma 2 (e.g., Nguyen et al. 2010, Lemma 1). Suppose f is differentiable, and the encoder function
g is fixed. The similarity function k∗(xg, yg) = f ′

(
pg(x

g,yg)
pg(xg)pg(yg)

)
maximizes if (X;Y ) in eq. (2) as

long as it is contained in the function class K.

Lemma 2 provides an optimal similarity function, which nevertheless depends on the density func-
tions. To use k∗ practically we make the following assumption on the joint density:
Assumption 3. The joint feature distribution is proportional to a Gaussian kernel, i.e., pg(xg, yg) ∝
Gσ(‖xg − yg‖2) := µ exp

(
−‖x

g−yg‖2
2σ2

)
, with µ a constant left to be determined.

Fixing yg , then pg(·, yg) mentioned in Assmp. 3 is known as the von Mises–Fisher distribution
[von Mises, 1918, Fisher, 1953, Bingham and Mardia, 1975], since xg and yg are unit vectors.
With Assmp. 3 on the joint density, the resultant marginal feature distribution pgdata is uniform
on the hypersphere Sd−1, where d is the dimension of the feature space (see Prop. 7 in App. B).
Additionally, for positive pairs the distance in the feature space, ‖xg − yg‖, is more likely to be
small. Based on Assmp. 3 we propose:
Theorem 4 (Gaussian similarity). Under Assumption 3 with Gaussian kernels and the same
settings as Lemma 2, the optimal similarity function k∗ satisfies that for any xg, yg ∈ Sd−1:
k∗(xg, yg) = f ′(CGσ(‖xg−yg‖2)),where d is the feature dimension andC is an absolute constant.

For simplicity we will rewrite k∗(xg, yg) = f ′ ◦Gσ(‖xg − yg‖2) by absorbing the constant C into
Gσ , since we have left some flexibility in Assumption 3. Bringing the optimal k∗ in Theorem 4 into
our objective eq. (2) we have:

sup
g∈G

E(x,y)∼ppos
[
f ′ ◦Gσ(‖xg − yg‖2)

]
− E(x,y)∼pdata⊗pdata

[
f∗ ◦ f ′ ◦Gσ(‖xg − yg‖2)

]
, (3)

where Gσ is defined in Assumption 3. We now use a similar sampling method as in Chen et al.
[2020]. Given a batch of N samples we can estimate the objective in eq. (3) as:

îf (X;Y ) = 1
N

N∑
i=1

f ′ ◦Gσ(‖xgi − y
g
i ‖

2)− 1
N(N−1)

∑
i6=j

f∗ ◦ f ′ ◦Gσ(‖xgi − x
g
j‖

2), (4)

where xi and yi are two different kinds of data augmentation of the i-th sample, and xi and xj
are different samples of the same kind of data augmentation. With the objective in equation 4, we
propose our algorithm for contrastive learning in Algorithm 1.

2.2 Alignment and Uniformity
Notably, if we choose the f -divergence to be the KL divergence, the objective in equation 3 becomes:

sup
g∈G
− 1

2σ2
E(x,y)∼ppos

[
‖xg − yg‖2

]
− µE(x,y)∼pdata⊗pdata

[
exp

(
−‖x

g−yg‖2
2σ2

)]
, (5)
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which retrieves the objective of the alignment and uniformity in Wang and Isola [2020]. Specifically,
in equation 5 the first expectation is the same as Lalign, and the second expectation is the same as
Luniform in Wang and Isola [2020] (up to the logarithmic transformation).

Let us now study alignment and uniformity for general f -divergences. Consider the objective in
eq. (3). For the first term, since f is convex, the derivative f ′ is monotonic increasing. Therefore,
in the ideal case, maximizing the first term would yield xg = yg for all (x, y) ∼ ppos, i.e., similar
sample pairs should have aligned representations. For uniformity, we have the following theorem:
Theorem 5 (uniformity). Suppose that the batch size N satisfies 2 ≤ N ≤ d + 1, with d the
dimension of the feature space. If the real function h(t) = f∗ ◦f ′ ◦Gσ(t) is strictly convex on [0, 4],
then all minimizers of the second term of eq. (3), i.e.,

∑
i 6=j f

∗ ◦ f ′ ◦Gσ(‖xgi − x
g
j‖2), satisfy that

the feature representations of all samples are distributed uniformly on the unit hypersphere Sd−1.

Here by “distributed uniformly” we mean that the feature vectors form a regular simplex, and thus
the distances between all sample pairs are the same. It reflects our intuition that the feature em-
beddings are evenly distributed. The assumption in Theorem 5 N ≤ d + 1 is always satisfied in
our experiments in §3. For instance, for CIFAR-10 experiments we choose N = d = 512. Com-
mon f -divergences such as KL, Pearson χ2 and Jensen–Shannon satisfy Theorem 5 and lead to the
property of uniformity. However, this conclusion does not hold for all f -divergences, e.g., Reversed
Kullback–Leibler (RKL) (App. A.1). Experimentally, we found that the RKL divergence results in
feature collapse (i.e., all feature vectors are the same) and thus poor performance.

3 Experiments
We compare our framework with various frameworks on several popular datasets. To achieve fair
comparison, we keep the network architecture and optimization the same, while only changing the
objective accordingly in our comparison. See Appendix C for more detailed settings. In particular,
our f -MICL gives state-of-the-art performance compared to popular choices of the loss functions,
such as InfoNCE [van den Oord et al., 2018, Chen et al., 2020], Uniformity [Wang and Isola, 2020],
and RPC [Tsai et al., 2020].

Figure 1: Distances between pairs of normalized
features within a batch. Green region: simi-
lar pairs. Orange region: dissimilar pairs. f -
MICL gives nearly uniform distances for dissimi-
lar pairs for the f -divergences. For non-satisfying
f -divergences such as the RKL, the features col-
lapse to a constant and thus the distances are zero.

Specifically, our results confirm the follow-
ing: (1) Our f -MICL encourages alignment be-
tween positive pairs, and encourages dissimi-
lar sample pairs to be equally far apart and thus
leads to uniformity; (2) By replacing the cosine
similarity with the Gaussian kernels, the perfor-
mance is consistently better across a variety of
f -divergences in our f -MICL framework.

3.1 Comparison with benchmarks

We compare with several state-of-the-art
benchmarks in Table 1. Note that SimCLR and
RPC use the cosine similarity while we use
the proposed Gaussian similarity. Our datasets
include CIFAR-10, CIFAR-100 [Krizhevsky
et al., 2009], STL-10 [Coates et al., 2011],
TinyImageNet [Chrabaszcz et al., 2017] and ImageNet [Deng et al., 2009] for image classification.
After learning a feature embedding, we evaluate the quality of representation using the test
classification accuracies via a linear classifier. We observe from Table 1 that our proposed f -MICL
consistently outperforms the benchmarks across all datasets. Specifically, we find that the JS
divergence is superior in general, especially in larger datasets.

3.2 Uniformity Test
To check the uniformity of feature vectors (Theorem 5) we plot the pairwise distance ‖xgi − x

g
j‖ of

the feature representations within the same batch on CIFAR-10 and CIFAR-100. We compute the
distances between the normalized features of every pair from a random batch, and then sort the pairs
with the increasing order. From Figure 1 we can see that f -MICL gives nearly uniform distances for
dissimilar pairs (orange regions) on both datasets with various proper f -divergences. In contrast, a
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Table 1: Test classification accuracy (%) on various datasets with linear evaluation.

Dataset
Baselines f -MICL

SimCLR Uniformity RPC KL JS Pearson SH Tsallis VLC

CIFAR-10 89.71 90.41 90.39 90.61 89.66 89.35 89.52 89.15 89.13
CIFAR-100 62.75 62.51 62.66 63.00 63.11 61.69 61.47 60.55 61.19

STL-10 82.97 84.44 82.41 85.33 85.94 82.64 82.80 84.79 83.27
TinyImageNet 30.54 41.10 34.93 39.16 42.88 38.42 40.87 32.95 38.61

ImageNet 57.66 59.12 56.11 58.91 61.11 55.33 52.37 53.11 54.26

random initialized model gives a less uniform distribution for dissimilar pairs. Besides, for f -MICL
we observe small pairwise distances for similar pairs (green regions). On the CIFAR-100 dataset we
observe that there are less similar pairs compared to CIFAR-10 as there are more classes.
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Table 2: A summary of common f -divergences. KL: Kullback–Leibler; JS: Jensen–Shannon; SH:
Squared Hellinger. For JS, we define ϕ(u) = −(u + 1) log 1+u

2 + u log u. For Pearson χ2, we
take f∗(t) = −1 if t ≤ −2. For Jeffrey, Ŵ = W +W−1 and W (·) is the Lambert-W product log
function. The Tsallis-α divergence is defined in Tsallis [1988] and we have α > 1 for f -divergences.
We ignore constant addition −1/(α− 1) because it does not change the optimization problem. The
Vincze–Le Cam divergence can be found in [p.47, Le Cam, 2012] which is closely related to χ2 and
Hellinger divergences. For the Vincze–Le Cam divergence we require −3 < t < 1 and f∗(t) = −1
if t ≤ −3.

Divergence f(u) f∗(t) f ′(u) f∗ ◦ f ′(u)

KL u log u exp(t− 1) log u+ 1 u
Reverse KL − log u −1− log(−t) −1/u log u− 1
JS ϕ(u) − log(2− et) log 2 + log u

1+u
− log 2 + log(1 + u)

Pearson χ2 (u− 1)2 t2/4 + t 2(u− 1) u2 − 1

SH (
√
u− 1)2 t

1−t 1− u−1/2 u1/2 − 1

Neyman χ2 (1−u)2
u

2− 2
√
1− t 1− u−2 2− 2u−1

Jeffrey (u− 1) log u Ŵ (e1−t) + t− 2 1− u−1 + log u Ŵ (e1/u/u) + log u− 1+u
u

Tsallis α uα/(α− 1) ((α− 1)t/α)α/(α−1) αuα−1

α−1
uα

Vincze–Le Cam (u−1)2

u+1
4− t− 4

√
1− t (u−1)(u+3)

(u+1)2
3− 4

u+1

A Additional theoretical results

In this appendix we provide additional theoretical results, including additional f -divergences and
the theory for weighting parameters.

A.1 f -divergences

We give examples of f -divergences in Table 2.. A detailed description of f -divergences can be
found in e.g. Sason and Verdú [2016].

A.2 Weighting parameters

In Algorithm 1 we added a weighting parameter α to balance the alignment and uniformity. We
prove that even after adding this parameter we are still maximizing the f -mutual information, al-
though with respect to a different f .

Proposition 6 (weighting parameter). Given α > 0 and a closed convex function f : R+ → R
such that f(1) = 0, define fα : α dom f → R with fα(x) = αf(x/α) − αf(1/α) for any x ∈
dom f . Then Ifα is still a valid f -mutual information (see Definition 1). Besides, by replacing f
with fα in equation 3 we have the following optimization problem:

sup
g∈G

E(x,y)∼ppos
[
f ′
(
Gσ(‖xg−yg‖2)/α

)]
− αE(x,y)∼pdata⊗pdata

[
f∗ ◦ f ′

(
Gσ(‖xg−yg‖2)/α

)]
,

where Gσ(‖xg − yg‖2) = µ exp
(
−‖x

g−yg‖2
2σ2

)
is the Gaussian kernel.

Note that α dom f means the scalar multiplication of a set which is applied element-wisely. Ac-
cording to Definition 1, fα is also a valid f -divergence. This proposition tells us that rescaling the
second term with factor α is equivalent to changing the function f to another convex function fα.
The transformation from f to αf(x/α) is also known as right scalar multiplication [e.g. Chapter X,
Urruty and Lemaréchal, 1993]. Let us now move on to our proof:

Proof. By definition we know that fα is convex and closed with fα(1) = 0, and thus Ifα is a valid
f -mutual information according to Definition 1. Moreover, we have f ′α(x) = f ′(x/α) for any
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x ∈ α dom f and
f∗α(t) = sup

x∈dom fα

xt− fα(x)

= sup
x∈αdom f

xt− αf(x/α) + αf(1/α)

= sup
x/α∈dom f

(x/α) · (αt)− αf(x/α) + αf(1/α)

= α sup
x/α∈dom f

((x/α) · t− f(x/α)) + αf(1/α)

= αf∗(t) + αf(1/α), (6)
where in the last line we used the definition of f∗(t). Plugging f ′α and f∗α into equation 3 yields the
desired result.

A.3 Uniform distributions

In the following we prove that under Assumption 3 the marginal feature distribution pgdata is uniform.
Proposition 7. Under Assumption 3, the marginal feature distribution pgdata is uniform on the hy-
persphere Sd−1, with d the dimension of the feature space.

Proof. Under Assumption 3 we have:

pg(x
g, yg) = C0 exp

(
−‖x

g − yg‖2

2σ2

)
, (7)

where C0 is a normalizing constant. Integrating yg we have the marginal distribution for xg:

pg(x
g) =

∫
Sd−1

C0 exp

(
−‖x

g − yg‖2

2σ2

)
dyg. (8)

It suffices to show that pg(x
g
1) = pg(x

g
2) for any xg1, x

g
2 ∈ Sd−1. SupposeQ is the orthogonal matrix

such that:
Qxg1 = xg2. (9)

Such a matrixQ always exists and constructingQ is not difficult. For example, assume that {xg1, x
g
2}

span a plane with an orthonormal basis e1, e2, and
xg1 = cos θ1 · e1 + sin θ1 · e2,
xg2 = cos θ2 · e1 + sin θ2 · e2, (10)

then Q can take the following form:

Q = [e1 e2]

[
cos(θ2 − θ1) − sin(θ2 − θ1)
sin(θ2 − θ1) cos(θ2 − θ1)

] [
e>1
e>2

]
(11)

such that Q is orthogonal and satisfies Qxg1 = xg2. Hence we have:

pg(x
g
1) =

∫
Sd−1

C0 exp

(
−‖x

g
1 − yg‖2

2σ2

)
dyg

=

∫
Sd−1

C0 exp

(
−‖Q

>xg2 − yg‖2

2σ2

)
dyg

=

∫
Sd−1

C0 exp

(
−‖Q

>xg2 −Q>zg‖2

2σ2

)
d(Q>zg)

=

∫
Sd−1

C0 exp

(
−‖x

g
2 − zg‖2

2σ2

)
dzg

= pg(x
g
2), (12)

where in the second line we used equation 9; in the third line we made the transformation yg =
Q>zg with zg a unit vector; in the fourth line we used the fact that applying a orthogonal matrix
does not change the norm and that the corresponding Jacobian determinant is one.

In fact, the proof above can be generalized from the Gaussian kernel to any radial basis functions,
by replacing the Gaussian kernel with ϕ(‖xg − yg‖2), and repeating the same proof. Here ϕ can be
any function such that the integral

∫
Sd−1 ϕ(‖xg − yg‖2)dyg is finite.
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B Proofs

Lemma 2 (e.g., Nguyen et al. 2010, Lemma 1). Suppose f is differentiable, and the encoder function
g is fixed. The similarity function k∗(xg, yg) = f ′

(
pg(x

g,yg)
pg(xg)pg(yg)

)
maximizes if (X;Y ) in eq. (2) as

long as it is contained in the function class K.

Proof. From Definition 1, we are computing the following supremum:

sup
g,k

∫ (
pg(x

g, yg)

pg(xg)pg(yg)
k(xg, yg)− f∗ ◦ k(xg, yg)

)
dpgdata ⊗ p

g
data. (13)

Suppose k is unconstrained and we fix g. The optimal solution should satisfy:

pg(x
g, yg)

pg(xg)pg(yg)
∈ (∂f∗)(k∗(xg, yg)), (14)

almost surely for (x, y) ∼ pdata ⊗ pdata. From (3.11) of Rockafellar [1966] this is equivalent to:

k∗(xg, yg) ∈ ∂f
(

pg(x
g, yg)

pg(xg)pg(yg)

)
. (15)

If f is differentiable, then for any u ∈ dom f , ∂f(u) = {f ′(u)} is a singleton.

Theorem 4 (Gaussian similarity). Under Assumption 3 with Gaussian kernels and the same
settings as Lemma 2, the optimal similarity function k∗ satisfies that for any xg, yg ∈ Sd−1:
k∗(xg, yg) = f ′(CGσ(‖xg−yg‖2)),where d is the feature dimension andC is an absolute constant.

Proof. Simply combine Proposition 7 with Lemma 2.

Theorem 5 (uniformity). Suppose that the batch size N satisfies 2 ≤ N ≤ d + 1, with d the
dimension of the feature space. If the real function h(t) = f∗ ◦f ′ ◦Gσ(t) is strictly convex on [0, 4],
then all minimizers of the second term of eq. (3), i.e.,

∑
i 6=j f

∗ ◦ f ′ ◦Gσ(‖xgi − x
g
j‖2), satisfy that

the feature representations of all samples are distributed uniformly on the unit hypersphere Sd−1.

Proof. From the definition of h it is clear that h is decreasing since f∗ and f ′ are both monotonically
increasing white Gσ is decreasing. Using h we rewrite the second term of equation 4 as

min
xg1 ,...,x

g
N∈Sd−1

∑
i,j

h(‖xgi − x
g
j‖

2). (16)

When N ∈ [2, d + 1], there exists a neat characterization of the minimizers, see e.g. Borodachov
et al. [2019, Theorem 2.4.1]. We include the proof below for completeness.

Apply Jensen’s inequality, we have:

1

N2

∑
i,j

h(‖xi − xj‖2) ≥ h

 1

N2

∑
i,j

‖xi − xj‖2


= h

 1

N2

∑
i,j

‖xi − xj‖2


= h

 1

N2

∑
i,j

(2− 2xi · xj)


= h

2

1−

∥∥∥∥∥ 1

N

N∑
i=1

xi

∥∥∥∥∥
2


≥ h (2) , (17)
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where in the first line we used Jensen’s inequality; in the third line we used ‖xi‖ = ‖xj‖ = 1 for
any i, j ∈ [N ]; in the last line we note that ‖

∑N
i=1 xi‖ ≥ 0 and h is a decreasing function. When

h is strictly convex and decreasing, it is in fact strictly decreasing, and hence the two inequalities
above can be attained iff

x̄ :=
1

N

∑
i

xi = 0, and ‖xi − xj‖2 ≡ c for all i 6= j, (18)

namely that {x1, . . . , xN} form a regular simplex with its center at the origin. We remark that
when h is merely convex, points forming a centered regular simplex may form a strict subset of the
minimizers.

To see the necessity of N ≤ d+ 1, let us note that

x>i xj =

{
1, i = j

− 1
N−1 , i 6= j

, (19)

since ∑
ij

‖xi − xj‖2 = 2N2 = N(N − 1)c =⇒ c =
2N

N − 1
= 2 +

2

N − 1
. (20)

Performing simple Gaussian elimination we note that the matrix X>X has rank N − 1 where
X = [x1, . . . , xN ] ∈ Rd×N . Therefore, we must have N − 1 ≤ d.

Lastly, we need to show when h is a (strictly) convex function, which may not always be true
depending on the f -divergences. We give the following characterization (we ignore the constants µ
and 2σ2 as they do not affect convexity):

• h strictly convex: hKL(t) = e−t, hJS(t) = log(1 + e−t)− log 2, hPearson(t) = e−2t − 1,
hSH(t) = e−t/2 − 1, hTsallis(t) = e−αt, hVLC = 3− 4

1+e−t ;

• h convex but not strictly convex: hRKL(t) = −t− 1 (RKL stands for Reversed Kullback–
Leibler, see Appendix A.1);

• h concave: hNeyman(t) = 2− 2et (Neyman stands for Neyman χ2, see Appendix A.1).

Only for the last case we do not have the guarantee that the minimizing configurations could form
a regular simplex. For RKL, in fact, any configuration that centers at the origin suffices since h is a
linear function.

C Experimental details

We present additional experimental details in this appendix, to further support our experiments in
the main paper.

In this paper, we follow the implementations in SimCLR (https://github.com/sthalles/
SimCLR). We use ResNet [He et al., 2016] as the feature encoder, and we adopt the similar pro-
cedure of SimCLR for sampling. Our experimental settings are detailed below:

• Hardware and package: We train on a GPU cluster with NVIDIA T4 and P100. The plat-
form we use is pytorch. Specifically, the pairwise summation can be easily implemented
using torch.nn.functional.pdist from pytorch.

• Datasets: the datasets we consider include CIFAR-10, CIFAR-100 [Krizhevsky et al.,
2009], STL-10 [Coates et al., 2011], TinyImageNet [Chrabaszcz et al., 2017] and Ima-
geNet [Deng et al., 2009].

• Augmentation method: For each sample in a dataset we create a sample pair, a.k.a. posi-
tive pair, using two different augmentation functions. For image samples, we choose the
augmentation functions to be the standard ones in contrastive learning, e.g., in Chen et al.
[2020] and He et al. [2020]. The augmentation is a composition of random flipping, crop-
ping, color jittering and gray scaling.
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Table 3: Detailed experimental settings. arch: the neural network architecture used. N : batch size;
d: the dimension of the feature representation; lr: learning rate; µ: the constant factor in µ; 1/(2σ2)
and α follow from Algorithm 1; epoch: the number of epochs we run.

Dataset arch N d lr µ (2σ2)−1 α epoch

CIFAR-10 ResNet-18 512 512 0.1 1 1 40 800
CIFAR-100 ResNet-18 512 512 0.1 1 1 40 1000

STL-10 ResNet-50 64 512 0.1 1 1 40 800
TinyImageNet ResNet-50 256 512 0.1 1 1 40 800

ImageNet ResNet-50 256 512 0.1 1 1 40 100

• Neural architecture: For CIFAR-10 and CIFAR-100 we use ResNet-18 [He et al., 2016];
for STL-10,TinyImageNet and ImageNet we use ResNet-50 [He et al., 2016].

• Batch size and embedding dimension: for experiments in CIFAR-10 and CIFAR-100 we
choose batch size 512, and for STL-10 we choose batch size 64 to accommodate one GPU
training. Finally, for TinyImageNet and ImageNet, we choose batch size 256. For all
the datasets, we choose the embedding dimension to be 512. In all of these cases, our
assumption N ≤ d+ 1 in Theorem 5 is satisfied.

• Hyperparameters: in all our experiments we fix the constant factor µ = 1. We find that in
practice the weight parameter α often needs to be large , which requires moderate tuning.
Note that we also implement RPC [Tsai et al., 2021] in our paper. For all the datasets,
we follow Tsai et al. [2021] and choose the relative parameters α = 1.0, β = 0.005 and
γ = 1.0 for all datasets.

• Optimizer and learning rate scheduler: We use SGD with momentum for optimization and
the cosine learning rate scheduler [Loshchilov and Hutter, 2017].

• Evaluation metric: we use linear evaluation to evaluate the performance, based on the
learned embeddings.

Table 3 gives common choices of hyperparameters for different datasets. Note that we may need to
further finetune α and σ for different f -divergences. See our supplementary code for more details.
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