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Abstract

Molecular graph representation learning is a fundamental problem in modern drug
and material discovery. Molecular graphs are typically modeled by their 2D topo-
logical structures, but it has been recently discovered that 3D geometric information
plays a more vital role in predicting molecular functionalities. However, the lack
of 3D information in real-world scenarios has significantly impeded the learning of
geometric graph representation. To cope with this challenge, we propose the Graph
Multi-View Pre-training (GraphMVP) framework where self-supervised learning
(SSL) is performed by leveraging the correspondence and consistency between 2D
topological structures and 3D geometric views. GraphM VP effectively learns a
2D molecular graph encoder that is enhanced by richer and more discriminative
3D geometry. We further provide theoretical insights to justify the effectiveness
of GraphMVP. Finally, comprehensive experiments show that GraphMVP can
consistently outperform existing graph SSL methods.

1 Introduction

In recent years, drug discovery has drawn increasing interest in the machine learning community.
Among many challenges therein, how to discriminatively represent a molecule with a vectorized
embedding remains a fundamental yet open challenge. The underlying problem can be decomposed
into two components: how to design a common latent space for molecule graphs (i.e., designing a
suitable encoder) and how to construct an objective function to supervise the training (i.e., defining a
learning target). Falling broadly into the second category, our paper studies self-supervised molecular
representation learning by leveraging the consistency between 3D geometry and 2D topology.

Motivated by the prominent success of the pretraining-finetuning pipeline [10], unsupervisedly pre-
trained graph neural networks for molecules yields promising performance on downstream tasks
and becomes increasingly popular [22, 29, 44, 47, 57, 58]. The key to pre-training lies in finding
an effective proxy task (i.e., training objective) to leverage the power of large unlabeled datasets.
Inspired by [31, 41] that molecular properties [13, 29] can be better predicted by 3D geometry
due to its encoded energy knowledge, we aim to make use of the 3D geometry of molecules in
pre-training. However, the stereochemical structures are often very expensive to obtain, making such
3D geometric information scarce in downstream tasks. To address this problem, we propose the
GraphMulti-View Pre-training (GraphM VP) framework, where a 2D molecule encoder is pre-trained
with the knowledge of 3D geometry and then fine-tuned on downstream tasks without 3D information.

We attain the aforementioned goal by leveraging two pretext tasks on the 3D and 2D molecular
graphs: one contrastive and one generative SSL. Contrastive SSL creates the supervised signal at an
inter-molecule level: the 3D and 2D graph pairs are positive if they are from the same molecule, and
negative otherwise; Then contrastive SSL [50] will align the positive pairs and contrast the negative
pairs simultaneously. Generative SSL [19, 27, 48], on the other hand, obtains the supervised signal in
an intra-molecule way: it learns a 2D/3D representation that can reconstruct its 3D/2D counterpart
view for each molecule itself. To cope with the challenge of measuring the quality of reconstruction
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on molecule 3D and 2D space, we further propose a novel surrogate objective function called variation
representation reconstruction (VRR) for the generative SSL task, which can effectively compute
such quality in the continuous representation space. The knowledge acquired by these two SSL
tasks is complementary, so our GraphM VP framework integrates them to form more discriminative
2D molecular graph representation. Consistent performance improvements empirically validate the
effectiveness of GraphMVP.

1.1 Preliminary

2D Molecular Graph represents each molecule as a 2D graph, with atoms as nodes and bonds as
edges. We denote it as gop = (X, F), where X is the atom attribute matrix and E is the bond attribute
matrix. Notice that here I includes both the connectivity and features. Given a 2D molecular graph
g2p, its representation hop can be obtained from a GNN model h,p = GNN-2D(X, E).

3D Molecular Graph additionally includes spatial locations of the atoms, which needless to be static
since, in real scenarios, atoms are in continual motion on a potential energy surface [2]. The 3D
structures at the local minima on this surface are named conformer. As the molecular properties
are conformers ensembled [17], GraphMVP enables adopting 3D conformers for learning better
representation. Given a conformer g3p = (X, R), its representation is h3p = GNN-3D(X, R), where
R is the 3D-coordinate matrix. For notation simplicity, we use x and y afterwards for the 2D and 3D

graphs, i.e., £ gp and y £ g3p. Then the latent representations are denoted as hg and hy,.

2  GraphMVP: Graph Multi-View Pre-training

Our model, termed as Graph Multi-View Pre-training (GraphMVP), is a self-supervised learning
approach based on maximizing mutual information (MI) between 3D and 2D views, enabling the
learnt representation to capture high-level factors [3, 4, 46] in molecule data. The 3D conformers
encode rich information about the molecule energy, which is complementary to the 2D topology.
Thus, applying SSL between the 3D and 2D views will provide a better 2D representation.

2.1 Mutual Information and Self-Supervised Learning

Mutual information (MI) measures the non-linear dependence [4] between two random variables: the
larger MI, the stronger dependence between the variables. Therefore for GraphMVP, we can interpret
it as maximizing MI between 3D and 2D views: to obtain a more robust 2D/3D representation by
sharing more information with its 3D/2D counterparts. We first derive a lower bound for MI (see
derivation in Appendix D), and the corresponding objective function Ly is

1
I(X;Y) > Lvr = EEp(w,y) [log p(yle) + log p(z|y)]. ey

In GraphM VP, we estimate this lower bound by proposing two modules: one contrastive SSL and one
generative SSL. Note that here both x and y are structured data, i.e., 2D and 3D molecular graphs,
which brings in extra obstacles in learning. We will discuss how to tackle them below.
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Figure 1: Overview of GraphMVP. The black dashed circles represent subgraph masking.
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2.2 Contrastive Self-Supervised Learning between 3D and 2D Views

Energy-Based Model with Noise Contrastive Estimation (EBM-NCE). If we model the condi-
tional likelihood in Equation (1) with energy-based model (EBM), and then solve it Noise-Contrastive
Estimation (NCE) [15], this will give us the following objective (derivations in Appendix E.2):

1
Lepvnce = —5Ep(y) [Epn@cm log (1 = o(fo(2,y))) + Ep(aly) log o(fu(z, y))} o
1
- iEp(w) [Epn(ym log (1 —o(fy(y,2))) + Epy.z) log o (fy(y, w))} ,

where fr(x,y) = fy(y,x) = exp((ha, hy)), pn is the noise distribution and o is the sigmoid
function. We take this as the contrastive SSL loss, i.e., Lc = Lepm-nce. We also notice that the final
formulation of EBM-NCE shares certain similarities with Jensen-Shannon estimation (JSE) [35].
However, the derivation process and underlying intuition are different: EBM-NCE models the
conditional distribution in MI lower bound (Equation (1)) with EBM, while JSE is a special case
of variational estimation of f-divergence. Besides, EBM-NCE shares more flexibilites and provides
more sampling options under the maximizing MI framework. We expand the a more comprehensive
comparison in Appendix E, plus some potential benefits with EBM-NCE.

2.3 Generative Self-Supervised Learning between 3D and 2D Views

Variational Molecule Reconstruction. One alternative solution is to use a variational lower bound
to approximate the conditional log-likelihood terms in Equation (1). To this end, we propose a
variational generative SSL, equipped with a crafty surrogate loss, which we describe follows. Take
one direction for illustration, when generating 3D conformers from their corresponding 2D topology,
we want to model the conditional likelihood p(y|xz). By introducing a reparameterized variable
Zy = lg + 0x © €, Where € ~ N (0, 1) and p,, and o, are two flexible functions on h,, we have a
lower bound on the conditional likelihood in Equation (1):

log p(y|&) > Eg(zy|a) [l0g P(Yl22)] — KL(q(2zz|2)||p(22))- 3

The expression is similar for log p(x|y). The above objective is composed of a conditional log-
likelihood and a KL-divergence. This term has also been recognized as the reconstruction term: it is
essentially to reconstruct the 3D conformers (y) from the sampled 2D molecular graph representation
(z). However, performing the reconstruction on the structured data space is not easy: since molecules
are discrete, modeling and measuring on the molecule space are difficult.

Variational Representation Reconstruction (VRR). To cope with this challenge, we propose a
novel surrogate loss by transferring the reconstruction from data space to representation space. Instead
of decoding the latent code z, to data space, we can directly project it to the 3D representation
space, denoted as ¢ (2, ). Since the representation space is continuous, we may as well model the
conditional log-likelihood with Gaussian distribution, resulting in L2 distance for reconstruction,
i.e., ||q(22) — SG(hy(y))||?. Here SG is short for stop-gradient, assuming that h,, is a fixed learnt
representation function, which has been widely adopted in the SSL literature [8, 14]. We term this
surrogate loss as VRR, and we take it for the generative SSL loss (derivations are in Appendix F):

1
Lo = Lvrr =5 [Eq(zm\m) [[lgz (22) = SG(hy)I*] + Eaq(zy ) [l (zy) — SG(hw)HS]]

+ 2 [KL(a(zalo)p(ze)) + K L(a(zal0)]p(24))]

Note that M1 is invariant to continuous bijective function [4]. Thus, this surrogate loss would be exact
if the encoding function h satisfies this condition. However, we find that GNN, though does not meet
the condition, can provide robust performance, which empirically justify the effectiveness of VRR.

@

A Unified View. Here following the definition of VRR, we would like to provide a unified view
on the generative SSL. (1) We can do reconstruction to the data space as Equation (3). (2) We can
do reconstruction to the representation as VRR Equation (4). (2.a) If we remove the stochasticity
in VRR, then it is simply the representation reconstruction (RR), as will be tested in the ablation
study Appendix C.3. (2.b) If we make the two views share the same representation function, like
CNN for multi-view learning on images, then it is reduced to the non-contrastive SSL [8, 14]. In
other words, these non-contrastive SSL methods are indeed special cases of VRR.



2.4 Multi-task Objective Function

At the SSL pre-training stage, we design the above two pretext tasks: one contrastive and one
generative. We conjecture then empirically prove that these two tasks are focusing on different
learning aspects, which are concluded into following two points. (1) From the perspective of
representation learning, contrastive SSL is learning from inter-data and generative SSL is learning
by intra-data. For contrastive SSL, one key step is to obtain the negative view pairs from inter-data
for contrasting; while generative SSL focuses on each data point itself, by reconstructing the key
features at the intra-data level. (2) From the perspective of distribution learning, contrastive SSL
and generative SSL are learning the data distribution from local and global manner, respectively.
Contrastive SSL learns the distribution locally by contrasting the pairwise distance at the inter-data
level. Thus, with sufficient number of data, the local contrastive operation can iteratively recover the
data distribution. Generative SSL, on the other hand, learns the global data density function directly.

Therefore, contrastive and generative SSL are essentially conducting representation and distribution
learning with different intuitions and disciplines, and we expect that combining these two can lead to
better representation. We later carry out an ablation study (Appendix C.3) to verify this empirically.
Thus we arrive at minimizing the following complete objective for GraphMVP:

Lcraphmve = a1 - Lc + a2 - Lg, )

where o, ap are weighting coefficients. A later performed ablation study (Appendix C.3) delivers
two important messages: (1) Both individual contrastive and generative SSL on 3D conformers can
consistently help improve the 2D representation learning; (2) Combining the two SSL strategies can
yield further improvements. Thus, we draw the conclusion that GraphMVP (Equation (5)) is able to
obtain an augmented 2D representation by fully utilizing the 3D information.

3 Experiments

Datasets. For pre-training datasets, we take 50k molecules from GEOM [2]. As mentioned before,
conformer ensemble can better reflect the molecular property, so we take C' = 5 conformers for each
molecule. For downstream tasks, we follow the mainstream research line [22, 57, 58] on exploring 8
molecular property prediction tasks.

Backbone models. We use Graph Isomorphism Network (GIN) [54] for 2D molecular modeling and
SchNet [41] for 3D geometric modeling.

Baselines. Due to the rapid growth of this field [30, 32, 51, 53], we are only able to test the most
well-acknowledged SSL methods from the accepted works in top machine learning conferences.
To be more specific, we carry out comprehensive experiments by considering 7 SSL baselines,
which are all operated on 2D GNN graph, including EdgePred [16], AttrMask [22], GPT-GNN [23],
InfoGraph [44], ContextPred [22], and JOAO [57].

Preliminary results. As observed in Table 1, we can first tell that these downstream tasks are very
hard, and there’s no overwhelming best SSL model. However, we can still see GraphMVP can obtain
a fairly large performance gain w.r.t. the overall performance. This preliminary results help support
the effectiveness of GraphM VP, and we will continue exploring further along this direction.

Table 1: Results for eight molecular property prediction tasks (classification). For each downstream
task, we report the mean (and standard deviation) ROC-AUC of 3 seeds with scaffold splitting. For
GraphMVP, we set M = 0.15 and C' = 5.

Pre-training BBBP  Tox21 ToxCast Sider ClinTox MUV HIV Bace Avg
- 65.4(2.4) 74.9(0.8) 61.6(1.2) 58.0(2.4) 58.8(5.5) 71.0(2.5) 75.3(0.5) 72.6(4.9) 67.21

EdgePred  64.5(3.1) 74.5(0.4) 60.8(0.5) 56.7(0.1) 55.8(6.2) 73.3(1.6) 75.1(0.8) 64.6(4.7) 65.64
AttrtMask  70.2(0.5) 74.2(0.8) 62.5(0.4) 60.4(0.6) 68.6(9.6) 73.9(1.3) 74.3(1.3) 77.2(1.4) 70.16
GPT-GNN  64.5(1.1) 75.3(0.5) 62.2(0.1) 57.5(4.2) 57.8(3.1) 76.1(2.3) 75.1(0.2) 77.6(0.5) 68.27
InfoGraph  69.2(0.8) 73.0(0.7) 62.0(0.3) 59.2(0.2) 75.1(5.0) 74.0(1.5) 74.5(1.8) 73.9(2.5) 70.10
ContextPred 71.2(0.9) 73.3(0.5) 62.8(0.3) 59.3(1.4) 73.7(4.0) 72.5(2.2) 75.8(1.1) 78.6(1.4) 70.89
JOAO 66.0(0.6) 74.4(0.7) 62.7(0.6) 60.7(1.0) 66.3(3.9) 77.0(2.2) 76.6(0.5) 72.9(2.0) 69.57

GraphMVP  68.5(0.2) 74.5(0.4) 62.7(0.1) 62.3(1.6) 79.0(2.5) 75.0(1.4) 74.8(1.4) 76.8(1.1) 71.69
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A  Self-Supervised Learning on Molecular Graph

Self-supervised learning (SSL) methods have attracted massive attention recently, trending from
vision [6-8, 18, 49], language [5, 10, 36] to graph [22, 29, 44, 47, 57, 58]. In general, there are two
categories of SSL: contrastive and generative, where they differ on the design of the supervised signals.
Contrastive SSL realizes the supervised signals at the inter-data level, learning the representation by
contrasting with other data points; while generative SSL focuses on reconstructing the original data
at the intra-data level. Both venues have been explored [30, 32, 51, 53] on the graph applications.

A.1 Contrastive graph SSL

Contrastive graph SSL first applies transformations to construct different views for each graph. Each
view incorporates different granularities of information, like node-, subgraph-, and graph-level.
It then solves two sub-tasks simultaneously: (1) aligning the representations of views from the
same data; (2) contrasting the representations of views from different data, leading to a uniformly
distributed latent space [50]. The key difference among existing methods is thus the design of
view constructions. InfoGraph [44, 47] contrasted the node (local) and graph (global) views. As
an extension, GraphLoG [55] learned the context (subgraph or motif) view using clustering and
contrasted it with both node and graph views. ContextPred [22] contrasted between node and context
views. GraphCL and JOAO [57, 58] made comprehensive comparisons among four graph-level
transformations and further learned to select the most effective combinations.

A.2 Generative graph SSL

Generative graph SSL aims at reconstructing important structures for each graph. By so doing, it
consequently learns a representation capable of encoding key ingredients of the data. EdgePred [16]
and AttrMask [22] predicted the adjacency matrix and masked tokens (nodes and edges) respectively.
GPT-GNN [23] reconstructed the whole graph in an auto-regressive approach.

Recall that all previous methods merely focus on the 2D topology. However, for science-centric
tasks such as molecular property prediction, 3D geometry should be incorporated as it provides
complementary and comprehensive information [31, 41]. To mitigate this gap, we propose GraphM VP
to leverage the 3D geometry with unsupervised graph pre-training.

B Molecular Graph Representation

Graph neural network (GNN) has become the mainstream modeling methods for molecular graph
representation. Existing methods can generally be split into two venues: 2D GNN and 3D GNN,
depending on what levels of information is being considered. 2D GNN focuses on the topological
structures of the graph, like the adjacency among nodes, while 3D GNN is able to model the “energy’
of molecules by taking account the spatial positions of atoms.

i

First, we want to highlight that GraphM VP is model-agnostic, i.e., it can be applied to any 2D and
3D GNN representation function, yet the specific 3D and 2D representations are not the main focus of
this work. Second, we acknowledge there are a lot of advanced 3D [12, 24, 31, 40] and 2D [9, 29, 56]
representation methods. However, considering the graph SSL literature and graph representation
liteature (illustrated below), we adopt GIN [54] and SchNet [41] in current GraphM VP.

B.1 2D Molecular Graph Neural Network

The 2D representation is taking each molecule as a 2D graph, with atoms as nodes and bonds as
edges, i.e., gop = (X, F). X € R™* 4 ig the atom attribute matrix, where n is the number of atoms
(nodes) and d,, is the atom attribute dimension. £ € R™*% is the bond attribute matrix, where m
is the number of bonds (edges) and d,,, is the bond attribute dimension. Notice that here F also
includes the connectivity. Then we will apply one transformation function 75p on the topological
graph. Given a 2D graph g,p, its 2D molecular representation is:

hap = GNN-2D(Thp(g2p)) = GNN-2D(Tap (X, E)). (6)



The core operation of 2D GNN is the message passing function [13], which updates the node
representation based on adjacency information. We have variants depending on the design of message
and aggregation functions, and we pick GIN [54] in this work.

GIN There has been a long research line on 2D graph representation learning [13, 29, 54]. Among
these, graph isomorphism network (GIN) model [54] has been widely used as the backbone in recent
graph self-supervised learning work [22, 57, 58]. Thus, we as well adopt GIN as the base model for
2D representation.

Recall each molecule is represented as a molecular graph, i.e., gop = (X, E), where X and E are
feature matrices for atoms and bonds respectively. Then the message passing function is defined as:

2 = MLPGY (20 3 (4 MLPEY () ). )
JEN(3)

where 2y = X and MLPgﬁ,El) and MLPI()];:QI) are the (I 4+ 1)-th MLP layers on the atom- and

bond-level respectively. Repeating this for K times, and we can encode K-hop neighborhood

information for each center atom in the molecular data, and we take the last layer for each node/atom

representation. The graph-level molecular representation is the mean of the node representation:

1
z(x) = ¥ Z 20 ®)

B.2 3D Molecular Graph Neural Network

Recently, the 3D geometric representation learning has brought breakthrough progress in molecule
modeling [12, 24, 31, 40, 41]. 3D Molecular Graph additionally includes spatial locations of the
atoms, which needless to be static since, in real scenarios, atoms are in continual motion on a
potential energy surface [2]. The 3D structures at the local minima on this surface are named
molecular conformation or conformer. As the molecular properties are a function of the conformer
ensembles [17], this reveals another limitation of existing mainstream methods: to predict properties
from a single 2D or 3D graph cannot account for this fact [2], while our proposed method can alleviate
this issue to a certain extent.

For specific 3D molecular graph, it additionally includes spatial positions of the atoms. We rep-
resent each conformer as g;p = (X, R), where R € R™*3 is the 3D-coordinate matrix, and the
corresponding representation is:

hap = GNN-3D(T5p(g3p)) = GNN-3D(T3p (X, R)), 9)
where R is the 3D-coordinate matrix and T5p is the 3D transformation. Note that further information
such as plane and torsion angles can be solved from the positions.

SchNet SchNet [41] is composed of the following key steps:

zi(o) = embedding(z;)

L MUY el ) (10)
j=1
h; = MLP(z\"),
where K is the number of hidden layers, and
Flaj,riry) = x5 ex(ri — ) = x; - exp(=llri = 7512 — ull3) (11)
is the continuous-filter convolution layer, enabling the modeling of continuous positions of atoms.

We adopt SchNet for the following reasons. (1) SchNet is a very strong geometric representation
method after fair benchmarking. (2) SchNet can be trained more efficiently, comparing to the other
recent 3D models. To support these two points, we make a comparison among the most recent 3D
geometric models [12, 31, 40] on QM9 dataset. QM9 [52] is a molecule dataset approximating
12 thermodynamic properties calculated by density functional theory (DFT) algorithm. Notice:



UNITE [38] is the state-of-the-art 3D GNN, but it requires a commercial software for feature
extraction, thus we exclude it for now.

Table 2: Reproduced MAE on QM9. 100k for training, 17,748 for val, 13,083 for test. The last
column is the approximated running time.

alpha  gap homo  lumo mu cv 2298  h298 2 u298 w0 zpve time
SE(3)-Trans [12]  0.143 59 36 36 0.052  0.068 68 72 1.969 68 74 5517 15h
SchNet [41] 0.077 50 32 26 0.030  0.032 15 14 0.122 14 14 1751 3h
EGNN [40] 0.075 49 29 26 0.030  0.032 11 10 0.076 10 10 1.562 36h
SphereNet [31] 0.054 41 22 19 0.028  0.027 10 8 0.295 8 8 1.401 50h

Table 2 shows that, under a fair comparison (w.r.t. data splitting, seed, cuda version, etc), SchNet can
reach pretty comparable performance, yet the efficiency of SchNet is much better. Combining these
two points, we adopt SchNet in current version of GraphMVP.

10



C Experiments

C.1 Experimental Settings

Datasets. We pre-train models on the same dataset then fine-tune on the wide range of downstream
tasks. We randomly select 50k qualified molecules from GEOM [2] with both 2D and 3D structures
for the pre-training. Clarified in Section 1.1, conformer ensembles can better reflect the molecular
property, thus we take C' conformers of each molecule. For downstream tasks, we first stick to
the same setting of the main graph SSL work [22, 57, 58], exploring 8 binary molecular property
prediction tasks, which are all in the low-data regime. Then we explore 6 regression tasks from
various low-data domains to be more comprehensive.

2D GNN. We follow the research line of SSL on molecule graph [22, 57, 58], using the same Graph
Isomorphism Network (GIN) [54] as the backbone model, with the same feature sets.

3D GNN. We choose SchNet [41] for geometric modeling, since SchNet: (1) is found to be a strong
geometric representation learning method with fair benchmarking; (2) can be trained more efficiently,
comparing to the other recent 3D models. We provide details in Appendix B.2.

C.2 Main Results on Molecular Property Prediction.

We carry out comprehensive comparisons with 10 SSL baselines and random initialization. For
pre-training, we apply all SSL methods on the same dataset based on GEOM [2]. For fine-tuning, we
follow the same setting [22, 57, 58] with 8 low-data molecular property prediction tasks.

Baselines. Due to the rapid growth of graph SSL [30, 32, 51, 53], we are only able to benchmark the
most well-acknowledged, peer-reviewed baselines: EdgePred [16], InfoGraph [44], GPT-GNN [23],
AttrMask & ContextPred[22], GraphLoG[55], G-{Contextual, Motif}[39], GraphCL[58], JOAO[57].

Our method. GraphMVP has two key factors: i) masking ratio (M) and ii) number of conformers
for each molecule (C). We set M = 0.15 and C' = 5 by default. For EBM-NCE loss, we adopt the
empirical distribution for noise distribution.

C.3 Ablation Study: The Effect of Objective Function

Table 3: Ablation on the objective function.

GraphMVP Loss  Contrastive Generative Avg

Random 67.21
InfoNCE only v 68.85
EBM-NCE only v 70.15
VRR only v 69.29
RR only v 68.89
InfoNCE + VRR v v 70.67
EBM-NCE + VRR v v 71.69
InfoNCE + RR v v 70.60
EBM-NCE + RR v v 70.94

In Section 2, we introduce a new contrastive learning objective family called EBM-NCE, and we
take either InfoNCE and EBM-NCE as a contrastive loss. For the generative SSL task, we propose a
novel objective function called variational representation reconstruction (VRR) in Equation (4). As
discussed in Section 2.3, stochasticity is important for GraphM VP since it can capture the conformer
distribution for each 2D molecular graph. To verify this, we add an ablation study on representation
reconstruction (RR) by removing stochasticity in VRR. Thus, here we deploy an ablation study
to explore the effect for each individual objective function (InfoNCE, EBM-NCE, VRR and RR),
followed by the pairwise combinations between them.

The results in Table 3 give certain constructive insights as follows: (1) Each individual SSL objective
function (middle block) can lead to better performance. This strengthens the claim that adding 3D
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information is helpful for 2D representation learning. (2) According to the combination of those
SSL objective functions (bottom block), adding both contrastive and generative SSL can consistently
improve the performance. This verifies our claim that conducting SSL at both the inter-data and
intra-data level is beneficial. (3) We can see VRR is consistently better than RR on all settings, which
verify that stochasticity is an important factor in modeling 3D conformers for molecules.
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D Maximize Mutual Information

In what follows, we will use X and Y to denote the data space for 2D graph and 3D graph respectively.
Then the latent representations are denoted as h, and hy,.

D.1 Formulation
The standard formulation for mutual information (MI) is

I(X;Y) = Ep(ay) | log M]. (12)

Another well-explained MI inspired from wikipedia is given in Figure 2.

H(X,Y)

H(X) H(Y)
Figure 2: Venn diagram of mutual information. Inspired by wikipedia.

Mutual information (MI) between random variables measures the corresponding non-linear depen-
dence. As can be seen in the first equation in Equation (12), the larger the divergence between the
joint (p(x, y) and the product of the marginals p(x)p(y), the stronger the dependence between X
and Y.

Thus, following this logic, maximizing MI between 3D and 2D views can force the 3D/2D representa-
tion to capture higher-level factors, e.g., the occurrence of important substructure that is semantically
vital for downstream tasks. Or equivalently, maximizing MI can decrease the uncertainty in 2D
representation given 3D geometric information.

D.2 A Lower Bound to MI
To solve MI, we first extract a lower bound:

I(X;Y) = Epay) [mg

2 Ep(a,y) {IOg

(p (w,y))Q} (13)

= 1 [log
3 ey p(z)p(y)

(
- ; (1) [logp zc|y)] Ep(x,y) {logp(ykv)}

SIH(YIX) + HX|Y))

Thus, maximizing MI is equivalent to minimizing the following objective function:

L= =[H(Y|X) + H(X[Y)] (14)

1
3l
In the following sections, we will describe two self-supervised learning methods for solving MI.
Notice that the methods are very general, and can be applied to various applications. Here we apply
it mainly for making 3D geometry useful for 2D representation learning on molecules.
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E Contrastive Self-Supervised Learning

The essence of contrastive self-supervised learning is to align positive view pairs and contrast negative
view pairs, such that the obtained representation space is well distributed [50]. We display the pipeline
in Figure 3. Along the research line in graph SSL [30, 32, 51, 53], InfoNCE and EBM-NCE are the
two most-widely used, as discussed below.

Align

Contrast 3D GNN y

Figure 3: Contrastive SSL in GraphMVP. The black dashed circles represent subgraph masking.
E.1 InfoNCE

InfoNCE [36] is first proposed to approximate MI Equation (12):

ey oy
fw(w y) + Z fe(x),y) fyly, @) + Zj fy(y(j)vw) ,
15)

where (/) y) are randomly sampled 3D and 2D views regarding to the anchored pair (z,y).
fa(x,y), fy(y, x) are scoring functions for the two corresponding views, whose formulation can be
quite flexible. Here we use fz(x,y) = fy(y, x) = exp((ha, hy)).

1
LinfoNCE = — 3 Epz,y)

Derivation of InfoNCE

]

I(X;Y) = log(K) = Ep (.4 [log L p(=, 7()

K p(@)p(y)
= > [loeg (((>) (y (3)]
2D gy
> — Z [log (1 + (K — 1)p7(:c(i))p(y(i))
- A p(x®,y®)
z()y
p(m(i)’yﬁ)) B
- Z [log ppE) ~ K —1)
v . p(m(i)7y(i))
x(®,y®) p(x®)p(y™)
p(x® y ) _ z() (D)
~_ Z [log pE@)p(y@) + (K 1)Em(J);£m( )p(:l:(7>)p(y( ))] /! @
GRYO)
=050 %
Z [log , fo(@, y) — |,
2 (1) 4y (D) fw(x(z)v y( )) + Zj:l fx(x(])v y(z))
16
) p(w(i) y(’i)) ( )
where we set f,(x(),y(V)) = 22 Y )

PED)p(y )"

Notice that in (I), we are using data x € X as the anchor points. If we use the y € Y as the anchor
points and follow the similar steps, we can obtain

fyy®, =)
I(X;Y) —log(K) > log — . 17
w%m [ f (y( i) m(z)) + Z =1 fy( (J)vx(z))] 1n

Thus, by add both together, we can have the objective function as Equation (15).
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E.2 EBM-NCE

We here provide an alternative approach to maximizing MI using energy-based model (EBM). To our
best knowledge, we are the first to give the rigorous proof of using EBM to maximize the MI.

E.2.1 Energy-Based Model (EBM)

Energy-based model (EBM) is a powerful tool for modeling the data distribution. The classic
formulation is:
exp(=E(x))

p(x) = — (18)

where the bottleneck is the intractable partition function A = [ exp(—E(x))dx. Recently, there
have been quite a lot progress along this direction [11, 15, 42, 43]. Noise Contrastive Estimation
(NCE) [15] is one of the powerful tools here, as we will introduce later.

E.2.2 EBM for MI

Recall that our objective function is Equation (14): Lyy = 3[H(Y|X) + H(X|Y')]. Then we model
the conditional likelihood with energy-based model (EBM). This gives us
1 fa(z,y) fu(y, )
L =—-Ey» [1 S 4 log SR
EBM 5 Ep(@.y) | 108 Aoy + log Ao (19)
where f;(x,y) = —E(x|y) and f,(y,x) = —E(y|z) are the energy functions, and A, and Ay
are the corresponding partition functions.

Under the EBM framework, if we solve Equation (19) with Noise Contrastive Estimation (NCE) [15],
the final EBM-NCE objective is

1
LEBM-NCE = — §Epdala(y) {]Epn(m\y) [log (1 —o(fz(x, y)))] + ]Epdm(m\y) [log o (fx(z, y))]} 20)
1
- §Epda(a(iv) |:Epn('y\93) [log (1 - G(fy (yv .’B)))] + Epdaxa(y\w) [lOg U(fy (yv m))]} .
Next we will give the detailed derivations.
E.2.3 Derivation of conditional EBM with NCE
WLOG, let’s consider the pg(z|y) first, and by EBM it is as follows:
exp(—E(x exp(fz(a, ex x,
o(aly) — CPCEE)  en(ey) es@y)
Jexp(—E(&|y))dz [ exp(fo(@|y))dT Azly

Then we solve this using NCE. NCE handles the intractability issue by transforming it as a binary
classification task. We take the partition function Az, as a parameter, and introduce a noise
distribution p,,. Based on this, we introduce a mixture model: z = 0 if the conditional x|y is from
pn(z|y), and z = 1 if x|y is from pya.(x|y). So the joint distribution is:

pn,data(w|y) = p(z = 1)pdata(w|y) +p(z = 0)pn(m|y)
The posterior of p(z = 0|z, y) is

p(z = O)pn($|’y) — v- pn<w|y)
p(z = 0)pn(m|y) +p(z = 1)pdata(m|y) v pn(m|y) +pdata(m‘y)’

pn,data(z = 0‘33’ y) =

p(z=0)
p(z=1)"

Similarly, we can have the joint distribution under EBM framework as:

where v =

Pno(x) = p(z = 0)pn(x|y) + p(z = 1)pe(z|y)
And the corresponding posterior is:

—0lx _ p(z = 0)pn(m|y) _ v pn(ﬂ’»‘|y)
Pro(z =02,8) = S @) + p(z = Dps(@ly) v pu(@ly) + po@ly)
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We indirectly match pg(z|y) to paan(x|y) by fitting py, o(z|x, ¥) t0 Py gaa(Z| 2, y) by minimizing
their KL-divergence:

min Dxi (Pn,aaa (212, Y) | [Pno (2] 2, y))

= Epn,dala(mvzly) [logpnyg(z‘m7 y)]

- /an,dala(xvz‘y) ‘IOan,o(Z|way)d93
z

= / {p(z = 0)pn,daa(®|y, 2 = 0) log pp o(2 = Oz, y) (22)
+ p(z = Dpngaa(@]z = 1,y)logpno(z = 1f2,y) }do

=Vv: Ep” (z|y) [ 0g Pn, 9 z = O|SC y)] +Epda[a(:c|y) |:10gpn,9(z = 1|w,y)}

v-pn(zly) ] po(x|y)
+Epn [log ]
& pa@ly) +po(aly)) T 08T ) + po(aly)

=v: Epn m\y) |:

This optimal distribution is an estimation to the actual distribution (or data distribution), i.e.,
Po(|Y) = Paa(x|y). We can follow the similar steps for pp(y|x) =~ paaa(y|x). Thus follow-
ing Equation (22), the objective function is to maximize

po(e|y)

v pu(zly) + po(zly)d
(23)

v - pu(x|y) + po(zly)

Ve Bpa() Epn ely) | 108 E s (1) Bpsaa () [10%

The we will adopt three strategies to approximate Equation (23):

1. Self-normalization. When the EBM is very expressive, i.e., using deep neural network
for modeling, we can assume it is able to approximate the normalized density directly [33,
42]. In other words, we can set the partition function A = 1. This is a self-normalized
EBM-NCE, with normalizing constant close to 1, i.e., p(x) = exp(—E(x)) = exp(f(x))
in Equation (18).

2. Exponential tilting term. Exponential tilting term [1] is another useful trick. It models
the distribution as pg(x) = g(x) exp(—Fg(x)), where g(x) is the reference distribution.
If we use the same reference distribution as the noise distribution, the tilted probability is
Do(x) = pp(x) exp(—Ep(x)) in Equation (18).

3. Sampling. For many cases, we only need to sample 1 negative points for each data, i.e.,
v=1

Following these three disciplines, the objective function to optimize py(x|y) becomes

pn(z|y) }
wly + po(x|y)

po(xly)
Ep, (z]y) log ]Epdm(m\y){l‘)g (

pn(zly) +159(-’B|y)}

po(x|y)
1+ pa( w|y)} Epuu(aly) {log 1 +p9($|y)}
exp(—fo(x,y))

1
exp(—fu(z,y)) +1 exp(—fz(,y)) + 1}
=E,, (m\y)[log(l —o(fe(z,y)) } + Eppua(aly) [10g0(fz(fv y))}

(24)

Ep, (@ly) [10%
Ep. (@ly) [10% } + Eppa(aly) [log

Thus, the final EBM-NCE contrastive SSL objective is

1
LEBMNCE = _§Epdam(y) |:Epn(m\y) log (1= o(fo(2,¥))) + Epp(aly) log o (f2(, y))}

1

(25)
- iEpdala(w) [Epn(ylm) log (1 - U(fy(yv x))) + Epdm(y,w) loga(fy(y, w))} .
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E.3 EBM-NCE v.s. JSE and InfoNCE

We acknowledge that there are many other contrastive objectives [37] that can be used to maximize MI.
However, in the research line of graph SSL, as summarized in several recent survey papers [32, 51, 53],
the two most used ones are InfoNCE and Jensen-Shannon Estimator (JSE) [20, 35].

We conclude that JSE is very similar to EBM-NCE, while the underlying perspectives are totally
different, as explained below.

1. Derivation and Intuition. Derivation process and underlying intuition are different.
JSE [35] starts from f-divergence, then with variational estimation and Fenchel duality
on function f. Our proposed EBM-NCE is more straightforward: it models the conditional
distribution in the MI lower bound Equation (14) with EBM, and solves it using NCE.

2. Flexibility. Modeling the conditional distribution with EBM provides a broader family of
algorithms. NCE is just one solution to it, and recent progress on score matching [42, 43]
and contrastive divergence [11], though no longer contrastive SSL, adds on more promising
directions. Thus, EBM can provide a potential unified framework for structuring our
understanding of self-supervised learning.

3. Noise distribution. Starting from [20], all the following works on graph SSL [32, 44, 51, 53]
have been adopting the empirical distribution for noise distribution. However, this is not the
case in EBM-NCE. Classic EBM-NCE uses fixed distribution, while more recent work [1]
extends it with adaptively learnable noise distribution. With this discipline, more advanced
sampling strategies (w.r.t. the noise distribution) can be proposed, e.g., adversarial negative
sampling in [21].

In the above we conclude three key differences between EBM-NCE and JSE, plus the solid and
straightforward derivations on EBM-NCE, we would like to share this general contrastive SSL
framework to the community.

According to the empirical results Appendix C.3, we observe that EBM-NCE is better than InfoNCE.
This can be explained using the claim from [25], where the main technical contribution is to construct
many positives and many negatives per anchor point. The binary cross-entropy in EBM-NCE is able
to realize this to some extent: make all the positive pairs positive and all the negative pairs negative,
where the softmax-based cross-entropy fails to capture this, as in InfoNCE.

To conclude, we are introduce using EBM in modeling MI, which opens many potential venues. As
for contrastive SSL, EBM-NCE provides a better perspective than JSE, and is better than InfoNCE
on graph-level self-supervised learning.
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F Generative Self-Supervised Learning

Generative SSL is another classic track for unsupervised pre-training [26-28], though the main focus
is on distribution learning. In GraphM VP, we start with VAE for the following reasons:

1. One of the biggest attributes of our problem is that the mapping between two views are
stochastic: multiple 3D conformers can correspond to the same 2D topology. Thus, we
expect a stochastic model [34] like VAE, instead of the deterministic ones.

2. For pre-training and fine-tuning, we need to learn an explicit and powerful representation
function that can be used for downstream tasks.

3. The decoder for structured data like graph are often complicated, e.g.., the auto-regressive
generation. This makes them suboptimal.

To cope with these challenges, in GraphM VP, we start with VAE-like generation model, and later
propose a light-weighted and smart surrogate loss as objective function. Notice that for notation
simplicity, for this section, we use hy and h to delegate the 3D and 2D GNN respectively.

F.1 Variational Molecule Reconstruction

As shown in Equation (14), our main motivation is to model the conditional likelihood:
1
L = —5 Ep(ay) log p(2ly) +log p(y|z)]

By introducing a reparameterized variable z, = iz + 04 © €, where € ~ N(0, ) and 15 and o,
are two flexible functions on h,, we have a lower bound on the conditional likelihood:

log p(Y|T) > Eq(zylz) [log p(yl22)] — KL(q(zz|2)||p(22))- (26)

Similarly, we have

log p(x|y) > Eq(z,|y) [log p(@]2y)] — KL(a(2y|y)llp(2y)); 27
where z, = jiy + 04y © €. 1y and o, are flexible functions on h,, and € ~ N(0, I).

Both the above objectives are composed of a conditional log-likelihood and a KL-divergence. The
conditional log-likelihood has also been recognized as the reconstruction term: it is essentially
to reconstruct the 3D conformers (y) from the sampled 2D molecular graph representation ().
However, performing the graph reconstruction on the data space is not easy: since molecules are
discrete, modeling and measuring are not trivial.

F.2 Variational Representation Reconstruction

To cope with data reconstruction issue, we propose a novel generative loss termed variation represen-
tation reconstruction (VRR). The pipeline is in Figure 4.
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Figure 4: VRR SSL in GraphMVP. The black dashed circles represent subgraph masking.

Our proposed solution is very straightforward. Recall that MI is invariant to continuous bijective
function [4]. So suppose we have a representation function h,, satisfying this condition, and this
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can guide us a surrogate loss by transferring the reconstruction from data space to the continuous
representation space:

Eq(zm\m) [Ing(y|Zw)] = _Eq(zw\m)[nhy(gx(zm)) - hy(y)Hg] +C,

where g, is the decoder and C' is a constant, and this introduces to using the mean-squared error
(MSE) for reconstruction on the representation space.

Then for the reconstruction, current formula has two steps: 1) the latent code z, is first mapped to
molecule space, and ii) it is mapped to the representation space. We can approximate these two
mappings with one projection step, by directly projecting the latent code z,, to the 3D representation
space, i.e., 4z (2z) ~ hy(gx(2z)). This gives us a variation representation reconstruction (VRR) SSL
objective as below:

Eq(zm\w) log p(yl|zz)] = _Eq(zmlw)[H%:(zm) - hy(y)Hg] +C.

B-VAE We consider introducing a § variable [19] to control the disentanglement of the latent
representation. To be more specific, we would have

log p(y|e) > Eq(z, o) [0 p(y|22)] — B+ KL(q(22|2)||p(22)). (28)

Stop-gradient For the optimization on variational representation reconstruction, related work have
found that adding the stop-gradient operator (SG) as a regularizer can make the training more stable
without collapse both empirically [8, 14] and theoretically [45]. Here, we may as well utilize this SG
operation in the objective function:

Eq(zale) 108 2(Yl22)] = —Eq(z,|0)[[|dz (22) — SG(hy (y))II3] + C. (29)

Objective function for VRR Thus, combining both two regularizers mentioned above, the final
objective function for VRR is:

1
Lviw = 5 Eygeato) 10 (2) = SG(hy) ] + Eqge, ) [l (24) — SG(ho) 3]
s
+ 5 - [KL(a(zal@) p(z2)) + KL(a(zy|9)lIp(z,)) |-
Note that MI is invariant to continuous bijective function [4], thus this surrogate loss would be exact
if the encoding function h,, and h satisfy this condition. However, we find GNN (both GIN and

SchNet) can, though do not meet the condition, provide quite robust performance empirically, which
justify the effectiveness of VRR.

(30)

F.3 Variational Representation Reconstruction and Non-Contrastive SSL

By introducing VRR, we provide another perspective to understand the generative SSL, including the
recently-proposed non-contrastive SSL [8, 14].

We provide a unified structure on the intra-data generative SSL:

* Reconstruction to the data space, like Equations (3), (26) and (27).
* Reconstruction to the representation space, i.e., VRR in Equation (30).
— If we remove the stochasticity, then it is simply the representation reconstruction
(RR), as we tested in the ablation study Appendix C.3.

— If we remove the stochasticity and assume two views are sharing the same represen-
tation function, like CNN for multi-view learning on images, then it is reduced to the
BYOL [14] and SimSiam [8]. In other words, these recently-proposed non-contrastive
SSL methods are indeed special cases of VRR.
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