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Abstract

Planning provides autonomous agents with the capability to solve long-horizon
decision-making problems by evaluating predictions of consecutive future states.
Visual observations are prevalent in many real-world applications due to their
generic format and the availability of inexpensive sensors. We present a new
method for long-horizon visual decision-making called Expansive Latent Space
Trees (ELAST). Our method relies on self-supervised training via contrastive
learning to obtain (a) a latent state representation and (b) a latent transition density
model. ELAST generates paths in the learned space through sampling-based
exploration within the estimated support region of the latent distribution. Unlike
other methods, it circumvents the need for image generative models and does
not rely on expert demonstrations. We embedded ELAST into a model-predictive
control scheme and demonstrate its effectiveness for a set of simulated long-horizon
visual control tasks.

1 Introduction

To perform challenging tasks in a real-world setting, autonomous agents must reason over many
temporal steps often by processing high-dimensional sensor data. In the last decade, machine learning
has significantly improved the state-of-the-art in vision-based robotics and perception [15]. Yet,
most existing methods are limited to short-horizon problems and fail if the goal lies far ahead in
the future. Reinforcement learning for instance becomes challenging in such settings due to the
sparseness of rewards and the thereby complicated credit assignment [17]. Planning algorithms [13]
on the other hand excel at solving temporally-extended decision-making problems. They predict a
sequence of intermediate states towards a goal by initializing a search from a starting configuration.
Common prerequisites for classical planning methods are the ability to measure distances between
states and compact, i.e. low-dimensional, representations. The recent emergence of learning-based
planning approaches has shown first success in lifting this concept to high-dimensional visual domains
[19, 21, 24, 10, 18, 4, 8, 16, 7].

We present a new method for long-horizon latent planning based on recent advances in self-supervised
representation learning and inspired by classical literature on sampling-based planning in robot
configuration spaces [13, 9, 11]. Sampling-based approaches probe the search space in order to
grow a tree or graph within the configuration space. The proposed planner builds upon this idea and
generates paths through iterative exploration of a learned lower-dimensional state space. Instead of
sampling new states from the underlying latent distribution, our method trains a dynamics model
to expand the tree at its frontier circumventing costly training of generative models. For each
new planning query, we initiate a new tree exploration starting from the current latent state. Our
exploration strategy draws on Expansive Space Trees (ESTs) [9], hence we call our method Expansive
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Figure 1: Conceptual overview of ELAST embedded into MPC control setting.

Figure 2: Illustration of the
transition density estimation
via NCE. Gaussian noise
(red), starting state of transi-
tion (gray) and end point of
the transitions (green).

Latent Space Trees (ELAST). Unlike EST however, we plan with an approximated dynamics model
in a learned space for which the definition of distances is not trivial.

In this work, we explain how such a planner can be implemented using a self-supervised approach
via contrastive learning of state representations and transition density estimators. We demonstrate
in specific scenarios that visual long-horizon decision-making tasks may effectively be solved by
sampling-based exploration in a learned lower-dimensional space. An initial set of experiments
showed that ELAST yields significant performance improvements over existing baseline methods.

2 Expansive Latent Space Trees

Problem Definition This work studies long-horizon visual control tasks. We define a state space
S = RN×C×W×H for which N denotes the number of frames, C the number of color channels, W
the width and H the height of single image frames. Instead of solving the control task directly in S,
we first map to a lower-dimensional latent space Z = RdZ . We use a goal space G = Z and dA-
dimensional continuous action space A = RdA . We seek a goal-conditioned policy π : Z × G → A
which navigates an agents towards a goal state. In addition to single environments, we also consider
families of environments conditioned on a context vector c ∈ RdC capturing task-relevant information,
e.g. the position of obstacles. Our aim is to solve tasks of the previous type given a collection of
recorded interactions. Hence our method is designed for the offline settings in which we train
self-supervised given fixed-size datasets of randomly generated trajectories.

Overview We propose ELAST which solves visual long-horizon control via sampling-based plan-
ning in a learned lower-dimensional space. A schematic overview is presented in Fig. 1. It consists
of several independent modules including a state encoder φ, transition density model ψ, forward
dynamics model hf and policy π, each represented by neural networks. During execution time, φ
maps the current and goal observations sstart, sgoal ∈ S to the latent encodings zstart, zgoal ∈ Z (Fig.
1a). For context-conditioned tasks, we additionally feed a context-vector c into the network 1. The
planning module (Fig. 1d) plans a sequence of intermediate latent states connecting zstart to zgoal.
The quality of the paths is further improved using a custom tree-rewiring mechanism. Reconnecting
nodes is enabled by the transition density model ψ (Fig. 1b) which we train using Noise-Contrastive
Estimation [5, 6] in the latent space. Once a solution path is found, the controller module (Fig. 1c)
queues the corresponding intermediate states to be achieved by a local policy π.

Contrastive and Predictive State Representation To overcome the challenges induced by the
complexity of image observations, we instead plan in a lower-dimensional learned space. An
encoder φ : S → Z is defined which maps observations st into a latent space Z = RdZ with
dZ � N×C×W×H . As described later, we desire an embedding which preserves the temporal
distances between states. Since our data consists of random trajectories, we do not have access to
the ground truth distances during training. Instead, we focus on pairwise similarity between states

1For brevity, the context c is omitted in the following.
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and use Contrastive Predictive Coding (CPC) via InfoNCE [22] to learn an embedding which maps
temporally neighboring states close together and uncorrelated ones far away from each other in Z .

InfoNCE learns lower-dimensional representations of sequential input data and is theoretically moti-
vated by preserving the mutual information between a context encoding and its future observations.
Informally, it uses a classification objective which attempts to correctly identify a positive pair
of samples, i.e. correlated ones, among negative ones, given a critic or similarity f . Similar to
[20, 14, 23], we utilize a learned forward dynamics model hf (zt, at) and consider positive pairs
(zt+1, ẑt+1). In this regard, ẑt+1 denotes the next state predicted given the current state zt and action
at. We compute the similarity between encodings based on the squared Euclidean distance and use
a critic f(st, st+1) = e−‖hf (φ(st),at)−φ(st+1)‖22 . Following [20], we encourage hf to be consistent
with the true latent dynamics by adding a MSE loss for hf . The corresponding encoder loss is shown
in Eq. 1

Lφ,total = −ES

[
log

f(st, st+1)∑
sj∈S f(st, sj)

]
+ EZ

[
(zt+1 − hf (zt, at))

2
]

(1)

The encoder obtained by optimizing Eq. 1 enforces locality of correlated states while shaping dynam-
ics that are predictable by a model hf . We argue that the latter encourages smoother embeddings
which also facilitates the approximation of the local policy.

Causality of transitions via NCE Due to the symmetry of the critic f , our learned embedding
cannot properly represent causal relationships between states. In other words, we organize subsequent
states close together but lose the information in which direction transition are possible. Our planner
however must be informed about the connectivity of states in order to rewire the tree and optimize
the path. To recover this information, we estimate the density of latent transition p(zt+1|zt) in a
self-supervised fashion via Noise-Contrastive Estimation (NCE) [5, 6].

NCE trains an unnormalized density model and normalization constant by discriminating between
samples from the original data distribution pd and an auxiliary noise distribution pn. For NCE to
work properly, it is important that pn lies within the support of pd and is close to the unknown target
distribution. Choosing a proper fit for pn is generally difficult, we can however exploit that zt and
zt+1 lie close together in Z . As shown in Fig. 2 we define pn using multivariate Gaussians N (zt,Σ)
centered at zt and set the value of Σ with respect to the average Euclidean distance between all zt
and zt+1 in the data (Fig. 2). We then use a model ψ : Z × Z → R, to estimate the log conditional
density log p(zt+1|zt). After training ψ with NCE, we can detect invalid transitions by rejecting
those whose log density lies below a certain threshold τt. In practice, we choose τt based on the split
of the lower n-th percentile of densities of all latent transition in the data.

Dynamics Ensemble Due to the unboundedness of the search space RdZ , erroneous latent transi-
tions might result in endless exploration of undefined areas outside the latent distribution. After the
encoder is trained, we replace the previous dynamics model with a more powerful ensemble estimator
Hf = {h1f , .., hkf} in order to reduce the number of detrimental transitions. Furthmore, we evaluate
the ensemble’s predictive uncertainty [12] to reject highly uncertain predictions during planning.

Tree Growth and Rewiring Given the encoder φ, forward dynamics ensemble Hf and transition
density model ψ, we implement the tree expansion and rewiring strategy of ELAST. The planning
starts by adding the initial encoding zstart to the tree. At each iteration step, we sample a state
zexpand from the current tree. Given zexpand and a random action a ∼ A, we use Hf to expand
the tree and generate a new state znew. It is discarded if the associated transition density is low,
i.e. ψ(znew, zexpand) < τt, or the predictive uncertainty Var({hif , i = 1..k}) exceeds a threshold τe.
Otherwise, we continue and find the neighboring nodes of znew within a radius of rneigh that are
reachable, i.e. pass the transition density test. For the set of resulting nodes, including zexpand, we
pick the one that minimizes the overall cost to traverse from zstart to znew and make it the new parent
node of znew. Lastly, we change znew to be the parent node for each of its neighbor if its reduces its
cost. The rewiring mechanism is illustrated in A.3

The above technique reconnects nodes to optimize the traveling distances to all nodes in the tree. We
further encourage quick exploration by sampling zexpand weighted by the inverse number of reachable
neighbors of each node. Once the tree reaches the vicinity of zgoal, we backtrace to determine the
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(a) BlockS (b) BlockAsym (c) BlockParam (d) PlanarRobot (e) CableEnv

Figure 3: Illustration of the evaluation environments. The red arrows in (b) display asymmetric dynamics. The
blue arrows in (c) and (d) indicate obstacle variations captured by the task context.

(a) BlockS (b) BlockAsym (c) BlockParam (d) PlanarRobot (e) CableEnv

Figure 4: Latent paths planned with ELAST visualized in the Isomap embedding

path. Our optimization strategy presents an adapation of the one in [11]. It has been used to design
asymptotically-optimal planners for sampling-based path-planning in robot configuration spaces.

3 Experiments

Setup We embed ELAST in a Model Predictive Control (MPC) scheme and evaluate its performance
for the simulated visual control tasks in Fig. 3. In the BlockS environment, a block agent navigates
through a long S-shaped corridor. In BlockAsym, the agent must take into account the unidirectional
stream on the left side of the workspace. This task is particularly interesting due to underlying
asymmetric dynamics. In BlockParam and PlanarRobot, a block agent respectively robot arm
is navigated around an obstacle. The configuration of the obstacle may vary hence representing
context-conditioned tasks. Further information about the evaluation environments is provided in A.1.

Table 1: Performances in terms of success rates (average over three independent runs)

Method BlockS BlockAsym BlockParam PlanarRobot CableEnv

medium hard

ELAST (ours) 0.97± 0.01 0.91± 0.04 0.99± 0.0 0.81± 0.03 0.76± 0.0 0.93± 0.01
CPC-CEM 0.39± 0.03 0.03± 0.02 0.21± 0.09 0.13± 0.01 0.66± 0.0 0.03± 0.01
CPC-BC 0.18± 0.02 0.0± 0.0 0.0± 0.0 0.42± 0.03 0.03± 0.02 0.03± 0.0
HTM 0.07± 0.03 0.0± 0.0 0.0± 0.0 0.16± 0.02 0.19± 0.03 0.02± 0.0
Visual-BC 0.25± 0.08 0.0± 0.0 0.04± 0.06 0.35± 0.02 0.56± 0.01 0.02± 0.01
Random 0.07± 0.02 0.0± 0.0 0.0± 0.0 0.03± 0.02 0.04± 0.01 0.02± 0.01

Results As shown in Table 1, ELAST clearly outperforms the baselines in terms of average success
rates. One reason is that it explores the latent space more efficiently which is crucial in long-horizon
settings. The Cross-Entropy-Method (CEM) [2] fails to reach far distant goals since it relies on
trajectory shooting without further encouraging exploration. Fig. 4 presents several examples of
latent paths planned by ELAST, projected into the 2D Isomap embedding.

4 Conclusion

We presented an application of self-supervised learning for planning given high-dimensional image
observations. We took inspiration from robot motion planning to design a planner that grows a search
tree within the estimated support of the latent distribution. A key insight is that density estimation via
NCE can be used to predict the temporal direction of transitions in the latent space. We embedded
ELAST in a model-predictive control setting and demonstrated its effectiveness for challenging
long-horizon tasks in simulation.
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A Appendix

A.1 Environment Implementation and Testing Parameters

All environments, except CableEnv were implemented in PyBullet [3]. The CableEnv was created
using the AGX dynamics physics engine [1].

Problems without context-conditioning For environments without a context-conditioning, train-
ing datasets consist each of 1000 random trajectories of length 25. Actions for data collection were
generated by initially sampling an action uniformly and then adding Gaussian noise during the
subsequent steps.

The test data contains start and goal configurations that were generated far distant from each other
to ensure difficult long-hotizon settings. We evaluate on 100 unseen test cases. For BlockS we
sample start and goal in a way that they are separated by one wall (medium) or two walls (hard).
For BlockAsym we sample start and goal on different sides of the corridor and such that the agent
cannot use the stream to reach the goal. The testing start and goal states in CableEnv are generated
on opposite sides of the obstacle.

Context-conditioned Tasks The generated data in context-conditioned environments contains 100
random contexts in both tasks. For each context, we generate 25 trajectories of length 20. To generate
vector representations of the context, we use the latent vectors generated by training a convolutional
autoencoder given raw image observation of the scene.

The test set consists of newly sampled contexts. In the BlockParam domain we sample test start and
goal states on opposite sides of the obstacle. The test data in PlanarRobot is generated by ensuring a
minimal angular distance of π/2 between the rotational angle of the base joints.

Table 2: Maximum number of steps for testing
Environment Max Steps

BlockS (medium) 100
BlockS (hard) 100
BlockAsym 100
BlockParam 50
PlanarRobot 75
CableEnv 50

A.2 Expansive Latent Space Trees - Further Details and Implementation

A.3 Tree Rewiring Mechanism

(a) (b) (c)

(d) (e) (f)

Figure 5: Tree growth and rewiring mechanism. Repeat: (a) select random node zexpand (blue) in the exisitng tree
(b) create new node znew (yellow) from zexpand using random action and learned forward model hf (or ensemble
Hf ) (c) find set of nodes Zneigh = {z0, z1, ..} (yellow) in local neighborhood around znew (d) change parent of
znew if there exist a node in Zneigh with lower total travelling cost and that transitions to znew (e),(f) alter parent
of nodes in Zneigh if transitioning from znew is possible and reduces travelling cost.
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A.3.1 Network Architecture and Training

We used the same network architectures in all experiments. The encoder parameters are show in
Table 3. In BlockS and BlockAsym, we use latent spaces of dimension 8 and 16 for the remaining
environments. The density model, forward model and policy use four hidden layers each consisting
of 64 neurons and LeakyRelu activation function.

Table 3: Hyperparameters of encoder φ
Parameter Value

Filter [16,16,16,32,64,64]
Kernels [3,4,4,4,4,4]
Strides [1,2,1,2,2,2]
Activation LeakyRelu
Dense Layers [256,128]
Latent Dimension 8 or 16

A.3.2 Planning Module

The hyperparameters of our planning module are shown in Table 4. We use niter = 2500 sampling
iterations in BlockParam, PlanarRobot and CableEnv and niter = 5000 otherwise. During exploration,
we sample nodes uniformly with probability puniform = 0.2. With probability pbias, nodes are sampled
weighted by the inverse of their number of neighbors and with pgoal we pick the node that lies closest
to the goal (Euclidean distance). To sparsen the tree, we discard new states that are closer than rdiscard
to any node in the current tree.

Table 4: Hyperparameters of planning module
Parameter Value Description

niter 2500 or 5000 Num. of samples states (includes rejected ones)
puniform 0.2 Probability of sampling node uniformly
pbias 0.78 Probability of using biased sampling
pgoal 0.02 Probability of using sampling node closest to goal
rneigh avg. neigh. dist in Z Radius to find neighbors for rewiring
rdiscard 0.25 x avg. neigh. dist in Z Radius to discard states
τt 2-th percentile Threshold for density test. Reject transition if below
τe 98-th percentile Threshold for uncertainty test. Reject state if above.

A.4 Implementation of Baselines

A.4.1 CPC-CEM

We apply CEM within the learned CPC embedding using the parameters below.

Table 5: Parameters of CEM Planner
Parameter Value

Planning horizon 25
Samples per iteration 100
Iterations 5
Elite size 10

A.4.2 Hallucinative Topological Memory

We used the implementatio of HTM from https://github.com/thanard/
hallucinative-topological-memory. Similar to [16] we use a latent space of size 100
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and 500 samples to generate the map of images. During the experiments we noticed that the predicted
image paths often contained shortcut connections which rendered the entire trajectory infeasible for
the policy.

A.4.3 Behavioral Cloning

For latent space behavioral cloning we used a neural network policy consisting of four layer with 64
neurons each and LeakyRelu activation functions.
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