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Abstract

Contrastive learning has demonstrated great capability to learn representations with-
out annotations, even outperforming supervised baselines. However, it still lacks
important properties useful for real-world application, one of which is uncertainty.
In this paper, we propose a simple way to generate uncertainty scores for many con-
trastive methods by re-purposing temperature, a mysterious hyperparameter used
for scaling. By observing that temperature controls how sensitive the objective is to
specific embedding locations, we aim to learn temperature as an input-dependent
variable, treating it as a measure of embedding confidence. We call this approach
“Temperature as Uncertainty”, or TaU. Through experiments, we demonstrate that
TaU is useful for out-of-distribution detection, while remaining competitive with
benchmarks on linear evaluation. Moreover, we show that TaU can be learned on
top of pretrained models, enabling uncertainty scores to be generated post-hoc with
popular off-the-shelf models. In summary, TaU is a simple yet versatile method for
generating uncertainties for contrastive learning. Open source code can be found
at: https://github.com/mhw32/temperature-as-uncertainty-public.

1 Introduction

Figure 1: CIFAR10 Images on the left have high TaU cer-
tainty while images on the right have low TaU certainty.

Representation learning through con-
trastive objectives has recently bro-
ken new ground, matching the perfor-
mance of fully supervised methods on
image classification [18, 15, 21, 5, 6,
12, 7, 40]. While contrastive learning
has shown strong practical results, it
still lacks some important properties
for real-world decision-making. One
such property is uncertainty, which
plays an important role in recognizing
and preventing errors. For example,
uncertainty can be leveraged to find
anomalies that are out-of-distribution
(OOD), on which a model’s predic-
tions may be degraded or entirely out-of-place. However, current contrastive frameworks do not
provide any indication of uncertainty as they learn one-to-one mappings from inputs to embeddings.

Our work uses the temperature parameter to estimate the uncertainty of an input. While almost all
contrastive frameworks include temperature in the objective, it historically has remained relatively
unexplored compared to work on negative samples [35, 38], stop gradients [12, 7, 40], and transfor-
mation families [30, 33]. Recently, it has been shown that smaller temperature increases the model’s
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penalty on difficult negative examples [34]. With this intuition, we make temperature a learned,
input-dependent variable. High temperature is tantamount to the model declaring that a training
input is difficult. Temperature, therefore, can be viewed a form of uncertainty. We call this simple
extension to the contrastive objective, “Temperature as Uncertainty” or TaU for short.

On benchmark image datasets, we show that TaU is useful for out-of-distribution detection, outper-
forming baseline methods for extracting uncertainty such as ensembling or Bayesian posteriors over
weights. We also show that one can easily derive uncertainty on top of pretrained representations,
making this approach widely applicable to existing model checkpoints and infrastructure.

2 Temperature as Uncertainty

To start, we give a brief overview of contrastive learning to motivate the approach. Suppose we
have a dataset D = {xi}ni=1 of i.i.d image samples from p(x), a distribution over a space of natural
images X . Let T be some family of image transformations, t : X → X , equipped with a distribution
p(t). The common family of visual transformations includes a random mix of cropping, color jitter,
gaussian blurring, and horizontal flipping [37, 32, 42, 4, 15, 5].

Define an encoding function f : X → Sd−1 that maps an image to a L2-normalized representation.
Let f be parameterized by a deep neural network. The contrastive objective for the i-th example is:

L(xi) = Et,t′,t1:k∼p(t)Ex1:k∼p(x)

[
log

ef(t(xi))·f(t′(xi))/τ

1
k

∑
j∈{1:k} e

f(t(xi))·f(tj(xj))/τ

]
(1)

where x1:k = {x1, . . . , xk} represents k i.i.d. samples, and τ is the temperature. We call transfor-
mations of the same image “positive examples” and transformations of different images “negative
examples”. We chose to present Eq. 1 in a very general form based on the noise contrastive [24, 14]
lower bound to mutual information [18, 26, 36, 33], although many popular frameworks like SimCLR
[5] and MoCo-v2 [6] can be directly derived from Eq. 1.

Algorithm 1: TaU + SimCLR
# g : TaU e n c o d e r n e t w o r k s
# x : m i n i b a t c h o f images
# s c a l e : c o n s t a n t ( e . g . 0 . 1 )

# encode a u g m e n t a t i o n and r e t u r n
# embedding and t e m p e r a t u r e
# i n v _ t a u i s used f o r s t a b i l i t y
emb1 , t a u 1 =g ( random_aug ( x ) )
emb2 , t a u 2 =g ( random_aug ( x ) )
emb1=norm ( emb1 ) # L2 norm
emb2=norm ( emb2 )
emb= c a t ( emb1 , emb2 )
# r e s c a l e f o r n u m e r i c a l s t a b i l i t y
t a u 1 = s igmoid ( t a u 1 ) / s c a l e
t a u 2 = s igmoid ( t a u 2 ) / s c a l e
t a u = c a t ( tau1 , t a u 2 )
# compute s i m i l a r i t i e s
pos_dps = sum ( emb1*emb2 ) * t a u 1
neg_dps = emb@emb . T * t a u
# mask o u t i d e n t i t y c o m p a r i s o n s
neg_dps = s imc l r_mask ( neg_dps )
# p a r a m e t r i c l o g so f tmax
l o s s =− pos_dps + logsumexp ( neg_dps )

Since Eq. 1 uses a dot product as a distance function, the role
of temperature, τ is to scale the sensitivity of the loss function
[34]. A τ closer to 0 would accentuate when representations
are different, resulting in larger gradients. In the same vein,
a larger τ would be more forgiving of such differences. In
practice, varying τ has a dramatic impact on embedding quality.
Traditionally, there are fixed values for τ that the authors of a
contrastive framework have painstakingly tuned.

We decide to learn an input-dependent temperature. In accor-
dance with previous observations, learning an input-dependent
temperature would amount to an embedding sensitivity for every
input. In other words, a measure of representation uncertainty.
Inputs with high temperature suggest more uncertainty as the
objective is more invariant to displacements, whereas inputs with
low temperature suggest less uncertainty as the objective is more
sensitive to changes in embedding location.

Implementing this idea is very straightforward. We can replace τ
in Eq. 1 with τ(t(xi)), overloading notation to define a mapping
τ : X → (M,∞) for some lower bound M . We call this new
objective TaU, or Temperature as Uncertainty. In practice, we

edit the encoder network f(x) to return d+ 1 entries, the first d of which are the embedding of x,
and the last entry being the uncertainty for x. A sigmoid is used to bound τ to be positive and a fixed
constant is used to set a lower bound M for stability. See Algo. 1 for pseudo-code.

3 Related Work

Learned Temperature Methods which learn temperature can be found in supervised learning
[41, 3], model calibration [13, 22], language supervision [27], and few-shot learning [25, 28]. In most
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of these approaches, temperature is treated as a global parameter when it is learned, not as a function
of the input as in TaU. The only example, to the best of our knowledge, of learned temperature as a
function of the input is [22], which uses temperature for calibration. Instead, we use temperature in
the context of self-supervised learning and apply it to OOD detection.

Uncertainty in Deep Learning There is a rich body of work in adding uncertainty to deep learning
models [10, 2], of which we highlight a few. Most straightforward is ensembling of neural networks
[31], where multiple copies are trained with different parameter initializations to find many local
minima. Further work attempts to enforce ensemble diversity for more variance [20, 1]. Another
popular approach of uncertainty is through Bayesian neural networks [11], of which the most practical
formulation is Monte Carlo dropout [9]. This approach frames using dropout layers during training
and test time as equivalent to sampling weights from a posterior distribution over model parameters.
Finally, most relevant is “hedged instance embeddings” [23], which edits the contrastive encoder f to
map an image to a Gaussian distribution, rather than a point embedding. The primary drawbacks of
this approach are (1) computational cost as it requires multiple samples, and (2) it is not proven to
work in high dimensions. In our experiments, we compare these baselines to TaU.

OOD Detection Existing OOD algorithms mostly derive outlier scores on top of predictions made
by large supervised neural networks trained on the inlier dataset, such as using the maximum softmax
probability [17], sensitivity to parameter perturbations [19], or Gram matrices on activation maps
[29] as the outlier score. While these methods work very well, reaching near ceiling performance,
they require human annotations, which may not be available.

4 Experiments

A primary application of uncertainty is to find abnormal or anomalous inputs. We aim to show that
using TaU temperatures as uncertainty is effective for out-of-distribution (OOD) detection [17, 19, 29],
with the added bonus of sacrificing little to no performance on downstream tasks.

OOD Detection We study OOD detection, where inputs from an anomalous distribution are fed
to a trained model. A well-performing metric should assign high uncertainty to these OOD inputs,
thereby making it possible to classify whether an input is OOD. The specific threshold is chosen by
observing the input distribution (e.g., by picking the confidence which has a 5% true positive rate).

We train TaU on CIFAR10 and consider three different OOD sets: CIFAR100, SVHN, and TinyIma-
geNet. We note that CIFAR10 and CIFAR100 are very similar, whereas SVHN is the most dissimilar.
To measure performance, we compute AUROC on correctly classifying an example as OOD. We
compare TaU to several baselines. Assuming unrestricted computational power and memory, one
could fit k-nearest neighbors on the entire training corpus, and treat the average distance of a new
example to k neighbors as an uncertainty score. We try out k = [1, 3, 10, 32, 100] with k = 10
working the best. For other baselines, please refer to Sec. 3. For MC Dropout, we take the average of
the standard deviations of each dimension of the embedding vectors. This is to find the uncertainty of
the embedding; the original implementation finds the uncertainty in the final predictions.

Table 1: Downstream Out-of-Distribution Detection: comparison of TaU to several popular base-
lines for uncertainty on deep neural networks. Out-of-distribution AUROC is reported.

Method (CIFAR10) CIFAR100 SVHN TinyImageNet

TaU + SimCLR 0.746 0.964 0.760
TaU + MoCo-v2 0.728 0.968 0.746
SimCLR + kNN 0.746 0.829 0.756
MoCo-v2 + kNN 0.712 0.800 0.726
SimCLR + MC Dropout [9] 0.504 0.684 0.512
Supervised + MC Dropout [9] 0.659 0.745 0.722
Hedged Instance Embedding [23] 0.509 0.834 0.508
Ensemble of 5 SimCLRs 0.532 0.525 0.513

From Table 1, we observe that on CIFAR100 and TinyImageNet – two image corpora with similar
content as CIFAR10 – TaU outperforms (or matches) all baselines, though only surpassing SimCLR
+ kNN by a small margin of 0-2%. However, for SVHN – an image corpus very different in content
to CIFAR10 – TaU outperforms all baselines by at least 13%. In fact, we find most baselines do not
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generalize well to contrastive learning, as many perform near chance AUROC. Even prior methods
specifically for contrastive uncertainty [23] do not consistently perform well. The exception is using
kNN with the caveat that the OOD set was not too far from the training set. Nearest neighbors
fundamentally relies on a good distance function, which is achievable when the OOD input can be
properly embedded. But in cases when we are truly OOD, it may not be clear where to embed an
anomalous image. In these cases, as with SVHN, kNN approaches struggle.

Linear Evaluation Although we have shown that TaU uncertainties can detect OOD inputs, they
would not be much good if it came at a large cost of performance on downstream tasks. To show this
is not the case, we measure performance through both linear evaluation [5] and k-nearest neighbors
on the training set [42] (where the predicted label for a test example is the label of the closest example
in the training set). Please refer to the appendix for experiment details.

Table 2: Downstream Image Classification: mean and standard deviation in accuracy are measured
over three runs with different random seeds. The best performing models are bolded.

Method kNN Eval Linear Eval

TaU + SimCLR 0.762± 0.001 0.750± 0.003
TaU + MoCo-v2 0.709± 0.004 0.690± 0.004
SimCLR 0.787± 0.004 0.775± 0.002
MoCo-v2 0.734± 0.004 0.720± 0.005

From Table 2, we observe TaU to perform only slightly worse than their deterministic counterparts,
with a small reduction of 2-3 percentage points on both linear and k-nearest neighbors evaluation.
While there is a non-zero cost to adding uncertainty, we believe that the trade is worthwhile.

Uncertainty on Pretrained Models We next show that TaU can be finetuned on top of pretrained
models, enabling uncertainties to be generated post-hoc on popular off-the-shelf checkpoints. Specifi-
cally, we finetune on supervised, SimCLR, BYOL, and CLIP embeddings. All models were pretrained
using ResNet50 on ImageNet with the exception of CLIP, which uses a ViT [8]. We finetune TaU
uncertainties for 40 epochs, and all images were reshaped to 224 by 224 pixels.

Table 3: Out-of-Distribution Detection using Pretrained Embeddings: using TaU to generate
uncertainties for several pretrained models. Out-of-distribution AUROC is reported.

Method (ImageNet) CIFAR10 CIFAR100 SVHN TinyImgNet LSUN COCO CelebA

TaU + Supervised 0.913 0.874 0.978 0.771 0.657 0.458 0.657
TaU + SimCLR [5] 0.823 0.870 0.968 0.747 0.552 0.554 0.717
TaU + BYOL [12] 0.763 0.808 0.955 0.686 0.471 0.497 0.840
TaU + CLIP [27] 0.056 0.044 0.071 0.154 0.779 0.579 0.883

Table 3 reports AUROC for OOD detection for a wide survey of outlier datasets. We find that for
supervised, SimCLR, and BYOL embeddings, the learned TaU uncertainties are largely able to
classify OOD inputs. The exception is with COCO, likely due to a close similarity with ImageNet
data points. However, CLIP surprisingly faces the opposite problem with low OOD scores for most
datasets but outperforming in COCO and LSUN. Further work could explore whether CLIP’s behavior
is due to differences in objective, architecture, or training.

5 Limitations and Future Work

We presented TaU, a simple method for adding uncertainty into contrastive learning objectives by
repurposing temperature as uncertainty. In our experiments, we compared TaU to existing benchmark
algorithms and found competitive downstream performance, in addition to TaU uncertainties being
useful for out-of-distribution detection. We then demonstrated how uncertainty can be added to
already trained model checkpoints, enabling practitioners to reuse computation.

We discuss an important limitation: our approach is restricted to contrastive algorithms built on
NCE. Other approaches, such as SimSiam [7], BYOL [12], and Barlow Twins [40], replace negative
examples entirely with stop gradients, where we find limited success with TaU. Future work can also
explore TaU-like techniques for detecting corrupted or adversarial examples.
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A Training Hyperparameters

Pretraining For all models, we use a representation dimensionality of 128. We use the LARS
optimizer [39] with learning rate 1e-4, weight decay 1e-6, batch size 128 for 200 epochs, as described
in [5]. For baseline models (no uncertainty), we use a fixed temperature τ = 0.1. For MoCO-V2,
we use K = 65536 negative samples with a momentum of 0.999 for updating the memory queue.
We use the same optimizer as described above but with learning rate 1e-3. For CIFAR10, all images
are resized to 32x32 pixels; For ImageNet, all images are resized to 256x256 pixels (with 224x224
cropping size). During pretraining, we use random resized crop, color jitter, random grayscale,
random gaussian blur, horizontal flipping, and pixel normalization (with ImageNet statistics). During
testing, we only center crop and do pixel normalization. For encoders we train from scratch, we use
ResNet18 [16] for encoders f . We adapted the Pytorch Lightning Bolts implementations of SimCLR
and MoCo-v2, found here: https://github.com/PyTorchLightning/lightning-bolts.

For the larger models, we downloaded existing SimCLR (ResNet50) checkpoints trained on ImageNet
from https://github.com/google-research/simclr and converted it to PyTorch checkpoints
using https://github.com/Separius/SimCLRv2-Pytorch.

Downstream Classification We freeze encoder parameters, remove the final L2 normalization, and
append a 2-layer MLP with hidden dimension of 128 and ReLU nonlinearity. For optimization, we
use SGD with batch size 256, learning rate 1e-4, weight decay 1e-6, and cosine learning rate schedule
that drops at epoch 60 and 80, with a total of 100 epochs.

Optimization Stability When optimizing the TaU objective, we found optimization instability
where τ(z) would either collapse to 0 or converge to ± inf if left unbounded. We found it crucial to
employ some tricks for optimization stability. First, we follow Neumann et al. and have our network
predict some α(z) = 1

τ(z) instead of τ(z) directly [22]. This changes the training dynamics but does
not change the underlying equation. Second, we bound α(z) to between 0 and 1 using a sigmoid
function. Finally, we divide α(z) by 0.1, which helps initialize the temperature to be in the same
range as fixed-temperature models. When using the uncertainty for out-of-distribution detection,
we found that using the pre-sigmoid α(z) worked much better than the post-sigmoid α(z), as the
differences between post-sigmoid values became indistinguishable using float32.
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