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BYOL[1] leads migration of SSL techniques from
contrastive to non-constative paradigm.

METHOD

DISCUSSION

Non-contrastive approach that mitigates the View representation projection
inherent computational constraint imposed by * Multiple target network branches considerably improve BYOL's
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contrastive methods. Un+k fe  SfYe, ., >tk d }(zg.,,.,+k) performance across all the datasets.
Key factors of recent success in SSL are « Marginal improvements in performance with MT-BYOL(3) over MT-
« Stochastic data augmentation techniques bnt r-;x BYOL(2).
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« Siamese configuration of deep neural % « With 2 target network branches, 12 cross-model views are generate
networks fe ge Sy which provide enough regularization to the online network
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augmented views per training cycle. f . 080 performance of BYOL with MT-
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This motivates us to extend BYOL from a single X fL}* Un Lo >t Yo >t 29 >t qo(zp)|[Prediction oo BYOL(3) with different values of n.
target network branch to multiple branches. j?““z EZ; . (a) Shows the convergence plot of
g Sg s BYOL.
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« We extend BYOL from a single target network [ 7 5, o . E]c) I’:aveC ;?reesgga ;(i)r:gdlﬁteoreng i\1flerueenst
for an (_)nllne network to multlple target netwqus Un—k >t Y& i * > “6n_k >_(z£-u—k ‘” branches of target networks
for simultaneous processing of multiple g ono '
augmented views of an image. e — sssacnsze | ¢ Effect of variation in initial values of n
» We show that MT-BYOL achieves considerably s marginal which provide empirical

evidences, that multiple augmented
views are the major factor in the
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better performance as compared to BYOL with

only marginally increasing of total computational (b) MT-BYOL(3)
erformance of MT-BYOL.
cost Method BYOL MT-BYOL(2) MT-BYOL(3) g
 We empirically show that Multi-Target BYOL is Batchs;ze 256 . >12 1024 | 256 O12 _ 1024_ 256. 5_12_ 1024 - * Multiple branc_hes of target netyvork
relatively more resilient to changes in batch size CIFARI10 85.46 87.59 88.34 | 90.29 90.51 91.31 90.64 91.19 91.56 080 cost margmal Computat|ona|
' CIFARI100 62.21 63.29 64.78 | 66.11 66.72 67.21 66.38 67.47 67.58 o overhead as their parameters are
. We evaluate the representations learned by MT- STLI0 8§7.31 88.48 89.72 | 91.11 92.23 9237 | 91.73  92.67 92.71  =<°" estimated by EMA of online network.
BYOL under the linear evaluation prOtOCO|S on Tiny-ImageNet 54.46 55.79 56.63 56.54 56.78 57.12 56.73 57.03 57.43 05 —— 256 Batch size .
various computer vision datasets and report the L . . . " — wusaasee | * 1N fUture we will explore the eftect of
« Test set classification accuracy of linear classifier evaluated on embeddings generated by 0 100 20 30 40 0 &0 70 further increasing the branches and

corresponding results.
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the frozen encoder for different datasets. other augmentation techniques.
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