Branching Out for Better BYOL

Azad Singh, Deepak Mishra Indian Institute of Technology Jodhpur

BYOL[1] leads migration of SSL techniques from contrastive to non-constative paradigm.

Non-contrastive approach that mitigates the inherent computational constraint imposed by contrastive methods.

Key factors of recent success in SSL are

- Stochastic data augmentation techniques
- Siamese configuration of deep neural networks

BYOL in its original form is limited to only two augmented views per training cycle.

This motivates us to extend BYOL from a single target network branch to multiple branches.

CONTRIBUTIONS

- We extend BYOL from a single target network for an online network to multiple target networks simultaneous processing multiple of tor augmented views of an image.
- We show that MT-BYOL achieves considerably better performance as compared to BYOL with only marginally increasing of total computational cost
- We empirically show that Multi-Target BYOL is relatively more resilient to changes in batch size.
- We evaluate the representations learned by MT-BYOL under the linear evaluation protocols on various computer vision datasets and report the corresponding results.

METHOD

RESULTS

Method	BYOL			MT-BYOL(2)			MT-BYOL(3)		
Batchsize	256	512	1024	256	512	1024	256	512	1024
CIFAR10	85.46	87.59	88.34	90.29	90.51	91.31	90.64	91.19	91.56
CIFAR100	62.21	63.29	64.78	66.11	66.72	67.21	66.38	67.47	67.58
STL10	87.31	88.48	89.72	91.11	92.23	92.37	91.73	92.67	92.71
Tiny-ImageNet	54.46	55.79	56.63	56.54	56.78	57.12	56.73	57.03	57.43

the frozen encoder for different datasets.

DISCUSSION

Test set classification accuracy of linear classifier evaluated on embeddings generated by

(c) MT-BYOL(3)

Epochs

300

400

(b) MT-BYOL(3)

0.90 -

0.85

~ 0.80

¥ 0.70 -

0.65

0.60 -

• Multiple target network branches considerably improve BYOL's

• Marginal improvements in performance with MT-BYOL(3) over MT-

• With 2 target network branches, 12 cross-model views are generate which provide enough regularization to the online network

256 Batch_size	11					
512 Batch_size						
1024 Batch_siz	e					
E00 C00 7/	0					

performance of BYOL with MT-BYOL(3) with different values of η .

Plots shows the comparison of

- (a) Shows the convergence plot of BYOL.
- (b) Shows the performance of MT-BYOL(3) with identical initial value of n for all the target network branches.
- (c) Have the plot for different values 's corresponding to different branches of target networks.
- Effect of variation in initial values of n is marginal which provide empirical evidences, that multiple augmented views are the major factor in the performance of MT-BYOL.
- Multiple branches of target network computational marginal cost overhead as their parameters are estimated by EMA of online network.
- In future we will explore the effect of further increasing the branches and other augmentation techniques.