

Self-supervised Test-time Adaptation on Video Data

Abstract

- In typical computer vision problems, pre-trained models are simply evaluated at test time without further adaptation.
- This general approach inevitably fails to capture potential distribution shifts that exist between training and test data.
- Adapting a pre-trained model to a new video encountered at test time could be essential to avoid the potentially catastrophic effects of such a shift, or to improve performance when the shift is mild.
- The lack of available annotations in test data prevents practitioners from using vanilla fine-tuning techniques.
- In this work, we explore whether the recent progress in self-supervised learning and test-time domain adaptation (TTA) in the image domain can be leveraged to efficiently adapt a model to a previously unseen and unlabelled video.

Problem Formulation

- Self-supervised Dense Tracking
 - MAST¹: Colorization
 - Search for correspondences by colorizing video frames.
 - Improved performance via using memory bank, LAB color space, and using regression instead of classification loss.
 - VideoWalk²: Contrastive Random Walk
 - Generate a palindrome from the video frames.
 - Divide each frame into multiple nodes (patches)
 - Track similar nodes via minimizing a cycle consistency objective.

Fatemeh Azimi^{1,2}, Sebastian Palacio^{1,2}, Federico Raue², Joern Hees², Luca Bertinetto³, Andreas Dengel^{1,2} ¹TU Kaiserslautern, ²DFKI, ³Five AI Ltd.

Problem Formulation

• Test-time Adaptation

 \circ Prediction-time BN³: Updates the BN statistics with a mi=omentum value between 0 and 1.

 $\hat{x} = (1 - \alpha) \times x_{old} + \alpha \times x_{new}$

- TENT*: Follows the proposed method in [4] where the affine parameters in the BN layer are updated, but self-supervised objective is employed instead of Entropy minimization.
- \circ Test-time Training (TTT)⁵: The whole network weights are tuned via minimizing the self-supervised objective.

• Frame Selection

- Offline: All the frames are used for adaptation. Ο
- Online: The first half of the video is used for training and the second half for Ο evaluation.

Experimental Results DAVIS2017

• Arbitrary domain shift

- Each video considered as an individual domain and hypothesized to have 0 arbitrary/mild domain shift wrt training data.
- Marginal improvement, mainly due to updating the BN statistics.
- Enforced domain shift
 - Severe domain shift via manually adding noise to the input data. Ο
 - Self-supervised TTA is highly effective in compensating for covariate shift. 0
 - The choice of TTA method depends on the perturbation variant.

Dense Tracking (Offline)				Dense Tracking (Online)				Test-time Adaptation			
VideoWalk		MAST		VideoWalk		MAST		BN	TENT*	TTT	Noise
J	F	J	F	J	F	J	F				
64.38	70.40	62.95	66.94	69.46	74.43	67.11	70.85				_
+1.00	+0.56	+0.47	+0.62	+0.67	+0.99	+1.04	+1.04	\checkmark			
+1.04	+0.50	+0.32	+0.65	+0.70	+0.97	+0.20	+0.30		\checkmark		
+1.17	+0.47	+0.09	+0.34	+0.64	+0.84	+0.27	+0.39			\checkmark	
58.40	63.08	32.70	35.48	64.43	67.89	41.51	43.36				Gaussian
+1.85	+2.16	+19.82	+20.54	+2.07	+2.58	+18.21	+19.26	\checkmark			
+1.91	+2.44	+17.98	+18.77	+3.73	+3.91	+15.90	+17.17		\checkmark		
+2.67	+2.97	+18.06	+18.15	+2.11	+2.20	+15.37	+16.58			\checkmark	
62.97	68.75	58.49	63.45	67.69	72.50	64.54	69.99				Motion Blur
+0.69	+0.51	+0.49	+0.80	+1.01	+1.62	+0.35	+0.10	\checkmark			
+0.41	+0.34	-0.10	+0.13	+1.04	+1.69	-0.21	-0.22		\checkmark		
+0.18	+0.11	+0.12	-0.18	+0.97	+1.28	-0.58	-0.43			\checkmark	
50.89	54.77	51.12	53.08	56.44	59.20	58.51	59.68				Snow
+1.63	+2.78	+0.83	+0.77	+2.60	+2.80	+0.51	+0.46	\checkmark			
+1.99	+2.80	+0.14	+0.34	+2.43	+2.52	+0.77	+0.99		\checkmark		
+2.79	+3.92	+0.32	+0.39	+1.98	+1.91	+0.15	+0.38			\checkmark	12
19.27	26.32	35.55	38.05	24.76	30.76	43.42	45.03				Fog
+11.23	+10.76	0.00	0.00	+11.54	+9.860	0.00	0.00	\checkmark			
+12.01	+12.23	+3.09	+2.66	+9.67	+9.22	+3.83	+3.51		\checkmark		
+18.70	+18.42	+9.85	+8.50	+14.07	+14.21	+9.24	+9.54			\checkmark	

Ablation on Momentum in Prediction-time BN

- We experimentally observed that replacing the BN statistics with the once collected from the test video leads to suboptimal performance.
- This could be due to the fact that a single video may not capture diverse-enough scenes.

Visualization of studied perturbations

Conclusion

- We investigated the role of TTA in alleviating the impact of covariate shift in self-supervised VOS.
- Based on practical considerations, we studied two scenarios namely offline and online TTA.
- Our results demonstrate while self-supervised TTA marginally improves the performance for arbitrary domain shift, it is highly effective when dealing with severe data distribution shift in both online and offline stups.

References

- [1] Lai, Z., Lu, E. and Xie, W., 2020. MAST: A memory-augmented self-supervised tracker. In *Proceedings of the IEEE/CVF Conference on* Computer Vision and Pattern Recognition (pp. 6479-6488).
- [2] Jabri, A., Owens, A. and Efros, A.A., 2020. Space-time correspondence as a contrastive random walk. arXiv preprint arXiv:2006.14613.
- [3] Nado, Z., Padhy, S., Sculley, D., D'Amour, A., Lakshminarayanan, B. and Snoek, J., 2020. Evaluating prediction-time batch normalization for robustness under covariate shift. arXiv preprint arXiv:2006.10963.
- [4] Wang, D., Shelhamer, E., Liu, S., Olshausen, B. and Darrell, T., 2020. Tent: Fully test-time adaptation by entropy minimization. *arXiv* preprint arXiv:2006.10726.

[5] Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A. and Hardt, M., 2020, November. Test-time training with self-supervision for generalization under distribution shifts. In International Conference on Machine Learning (pp. 9229-9248). PMLR.