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e We train our model on three widely used datasets: CIFAR10, STL10, COIL20.

e However, the performance of pretext tasks can depend heavily on the dataset. For
instance, the rotation-based pretext task [1] might fail to recognize the rotation
degree of flowers.

e For our quantitative evaluation we use the FID score.

Method CIFAR10 | STL10 | COIL20 For more details in our paper, please access through the following link or scan the
e Motivated by [3, 4], we propose our pretext task: Insert Gaussian noise in the SNGAN 23.680 | 62.381 | 94.491 QR code: https://bit.1ly/3EG1GHc
blocks of the discriminator and predict the position. P-SNGAN 19.262 | 61.667 | 92.421
, | | SNGAN(R) 21.668 | 61.142 | 92.257
e Our learned representations lead to a more balanced classification accuracy across P-SS-SNCAN (R)| 17.166 | 59.664
classes, P-SS-SNGAN (N)| 17.8%6

e Replace the convolutional discriminator with a polynomial network from the II-
net family [2]. Suppose there are N blocks in the discriminator with the output
of the ¢ block being zp11 = 2zt + Cze + (Czp) * 2.
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Fig. 1: Diagram of our Self-Supervised Poly-GAN (P-SS-SNGAN(N)). Method CIFARI0 ) STL10 COIL20
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