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Molecular property predictions are better when .
additionally informed by 3D geometry Setting ApprOaChes Result

Molecules without 3D Standard Approach:
information for which Use GNNs with the
properties have to be molecular graph

predicted. | as the only input
Z D and ignore 3D based

atomic interactions.

However, 3D information is often unavailable. We pre-train a
GNN to generate implicit 3D information from 2D inputs which it
can use to inform downstream molecular property predictions.

Predictions are fast but less
accurate since 3D information
cannot be leveraged.

« More accurate than 2D methods but fast
« Highly transferable and robust representations
* Principled SSL: we know that 3D reasoning helps

Explicit 3D Approach:
Employ classic (1) or

.| learned (2) methods to | "'fffj."”.".".- ; Accurate predictions but
Multi-conformer contrastive objective: COMpOIE 30 conmindtes g, W@ e methods for generating
and use them as input to a T e s o coordinates are too slow for
é)@f of conformélS D 1D 3D Graph Neural Network. B YTTY many real-world applications.
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information in latent
representations.

inform property predictions.

=5 | = Predictions are more
accurate than methods that
do not use 3D information.
=> Inference is fast and only
uses a single forward pass of
the chosen 2D Net.

2. Transfer weights of ‘Fa
2D Net and fine-tune

for predicting

molecular properties.

Molecules with 3D
information that can be
used for pre-training.
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