Stochastic Contrastive Learning

Jason Ramapuram*, Dan Busbridge*, Xavier Suau, Russ Webb 2nd Workshop on Self-Supervised Learning: Theory and Practice (NeurIPS 2021) · Apple Inc.

Abstract

Self-Supervised Learning (SSL) models:

- Present competitive performance with Supervised Learning,
- Lack the ability to infer latent variables.

This work (StochCon) introduces latent variables into the SimCLR contrastive learning framework and enables:

- Attributing representation uncertainty,
- Task-specific compression,
- Interpretable representations.

Objectives

$$\mathscr{L}_{i,j}^{(i,j)} = -\log \frac{\exp(\operatorname{sim}(v_i, v_j)/\tau)}{\sum_{k=1}^{2N} 1_{[k \neq i]} \exp(\operatorname{sim}(v_i, v_k)/\tau)}$$

. •

- Optimize standard InfoNCE objective.
- Representation vector z' is sampled from a pathwise differentiable distribution.

Contributions

- Introduce differentiable latent variables into SimCLR framework.
- StochCon-Bern induces a 588x compressed representation of image data that is useful for downstream tasks.
- Improves fine-tuned downstream performance on CIFAR10 and ImageNet using ResNet50 and ResNet200.
- Demonstrate competitive discriminative performance on CIFAR10 with as few as 11 bits.

StochCon Model

Results

Test Top-1%

	CIFAR10-ResNet50		ImageNet-ResNet50	
Model	Fine-Tuned	Frozen	Fine-Tuned	Frozen
StochCon Bern	96.42	91.96	77.49	67.00
StochCon Iso-Gauss	96.08	92.40		
Supervised	95.00		76.13	
SimCLR	94.35	91.35	76.37	71.34

StochCon CIFAR10 Isotropic-Gaussian Ablations

Algorithm 1 Stochastic Contrastive Learning (StochCon) **Require:** Data: $x \sim p(x), t \sim \mathbb{T}(x)$ **Require:** Models: f_{θ} : backbone, g_{θ} : head, { π_{θ} , ρ_{θ} }: projectors while not converged do $\{\hat{x}, \hat{x}'\} = \{t \circ x, t' \circ x\}$ $\{h, h'\} = \{f_{\theta}(\hat{x}), f_{\theta}(\hat{x}')\}$ $\phi' = \pi_{\theta}(h')$ $\mathbf{z}' \sim q_{\boldsymbol{\theta}}(\mathbf{z}|\boldsymbol{x})$ $h'' = \rho_{\theta}(\mathbf{z}')$ $\{\boldsymbol{v}, \boldsymbol{v}'\} = \{g_{\boldsymbol{\theta}}(\boldsymbol{h}), g_{\boldsymbol{\theta}}(\boldsymbol{h}'')\}$ $\min_{\theta} \mathcal{L}_{\text{InfoNCE}}(v, v')$ end while

Prevent variance collapse by estimating variance of opposing set of views.

 Smaller bottleneck dimension relies on variance to increase

representation capacity.

• Augment input with $\{t, t'\}$ Produce representations optional) Bottleneck projection Pathwise differentiable (Mohamed et al., 2020) latent variable. optional) Bottleneck upsampler InfoNCE projection

- Bottleneck trades top-1 performance for compression.
- Mean F1 performance of multi-class Random Forest with varying number of features \mapsto as few as 11 features leads to competitive CIFAR10 performance.
- StochCon-Bern enables countable metrics.
- Bottleneck representation (soft top 512) uses all available capacity (50% zeros, 50% ones).