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Self-Supervised Learning (SSL) models: 
- Present competitive performance with 

Supervised Learning, 
- Lack the ability to infer latent variables. 

This work (StochCon) introduces latent variables 
into the SimCLR contrastive learning framework and 
enables: 

- Attributing representation uncertainty, 
- Task-specific compression, 
- Interpretable representations.

StochCon Model

Results
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Contributions

 

- Optimize standard InfoNCE objective. 

- Representation vector  is sampled from a 
pathwise differentiable distribution.

ℒ(i,j)
InfoNCE = − log

exp(sim(vi, vj)/τ)

∑2N
k=1 1[k≠i] exp(sim(vi, vk)/τ)
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Algorithm 1 Stochastic Contrastive Learning (StochCon)
Require: Data: x ⇠ ? (x), C ⇠ T(x)
Require: Models: 5✓ : backbone,6✓ : head, {c✓, d✓} : projectors

while not converged do
{x̂, x̂0} = {C � x, C 0 � x} ù Augment input with {C, C 0}
{h,h0} = {5✓ (x̂), 5✓ (x̂0)} ù Produce representations
�0 = c✓ (h0) ù (optional) Bottleneck projection
z0 ⇠ @✓ (z|x) ù Pathwise differentiable (Mohamed et al., 2020) latent variable.
h00 = d✓ (z0) ù (optional) Bottleneck upsampler
{v, v0} = {6✓ (h),6✓ (h00)} ù InfoNCE projection
min✓ LInfoNCE (v, v0)

end while
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CIFAR10-ResNet50 ImageNet-ResNet50 ImageNet-ResNet200

Model Fine-Tuned Frozen Fine-Tuned Frozen Fine-Tuned Frozen

StochCon Bern 96.42 91.96 77.49 67.00 80.24 64.25

StochCon Iso-Gauss 96.08 92.40 — — — —

Supervised 95.00 — 76.13 — 78.34 —

SimCLR 94.35 91.35 76.37 71.34 79.82 73.52

Test Top-1 %

StochCon CIFAR10 Isotropic-Gaussian Ablations

StochCon CIFAR10 Bernoulli Ablations
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- Prevent variance collapse 
by estimating variance of 
opposing set of views. 

- Smaller bottleneck 
dimension relies on 
variance to increase 
representation capacity.

- StochCon-Bern enables 
countable metrics.  

- Bottleneck 
representation (soft top 
512) uses all available 
capacity (50% zeros, 
50% ones).

- Introduce differentiable latent variables into 
SimCLR framework. 

- StochCon-Bern induces a 588x compressed 
representation of image data that is useful for 
downstream tasks. 

- Improves fine-tuned downstream 
performance on CIFAR10 and ImageNet using 
ResNet50 and ResNet200. 

- Demonstrate competitive discriminative 
performance on CIFAR10 with as few as 11 bits.

- Bottleneck trades top-1 
performance for 
compression. 

- Mean F1 performance of 
multi-class Random 
Forest with varying 
number of features  as 
few as 11 features leads 
to competitive CIFAR10 
performance.
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