
We test TaU, trained from scratch, on out-of-distribution (OOD) 
detection. TaU outperforms a variety of baselines in quantifying 
embedding uncertainty. For clarity, SimCLR + kNN and MoCo-v2 + 
kNN represent applying a kNN algorithm over SimCLR and MoCo-
v2 embeddings and using the average distance of the k nearest 
neighbors as uncertainty.


Finally, we test TaU’s OOD detection using pretrained embeddings. 
We reshape images to 224x224 and compare against ImageNet 
images. We find that TaU develops good OOD detection 
capabilities, even when the pretrained embeddings are frozen. 
Surprisingly, TaU works even with embeddings from non-
contrastive models such as a ResNet trained on a supervised 
learning objective.


Experiments

• Contrastive learning learns strong embeddings without labels. 

• We induce uncertainties over the learned contrastive 

embeddings by repurposing the temperature term in the 
contrastive learning loss. 


• We have the model predict a new temperature per training 
example as a measure of uncertainty. We call this method 
“Temperature as Uncertainty (TaU).


• We demonstrate that TaU can do out of distribution (OOD) 
detection, outperforming other embedding uncertainties. 
Moreover, TaU can be learned post-hoc on frozen models—
even ones which were not trained with contrastive learning.
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We visualize Cifar10 images using TaU. The most certain images 
are on the left and the most uncertain images are on the right.


Out of distribution (OOD) detection involves comparing the 
distributions of uncertainty scores for two distributions. Specifically, 
we can quantify how different the distributions are. In all the 
experiments, we use the AuROC when thresholding the 
uncertainty scores for classification.


Introduction

Let  be a function, parameterized by a neural networks, which 
maps an image  to an  normalized representation. Let  be a 
distribution of augmentations and  the softmax temperature. TaU 
has  depend on . The TaU objective function is then:


In short, this can be viewed as the SimCLR objective [2] with 
learned temperature. Temperature modifies how “sharp” the 
distribution is, which makes it good for representing uncertainty.


Finally, we employ many of the stability tricks from [1].
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We notice two important limitations with TaU. To start, training TaU 
from scratch does not work with stop-gradient based contrastive 
learning methods, such as SimSiam or BYOL. For these methods, 
the embeddings must be pretrained. Moreover after employing the 
stability tricks from [1], the actual temperature values quickly 
converge to the lower bound of one. In the end, the differences 
between the temperatures become very small quickly.


Future work includes trying TaU on a variety of other cases in 
which uncertainty may be useful (e.g., corruptions, calibration, 
adversarial examples). Other future work might consist of applying 
TaU to other modalities, such as language.

Limitations & Future Work


