Self- and Semi-supervised Lea

Setup:

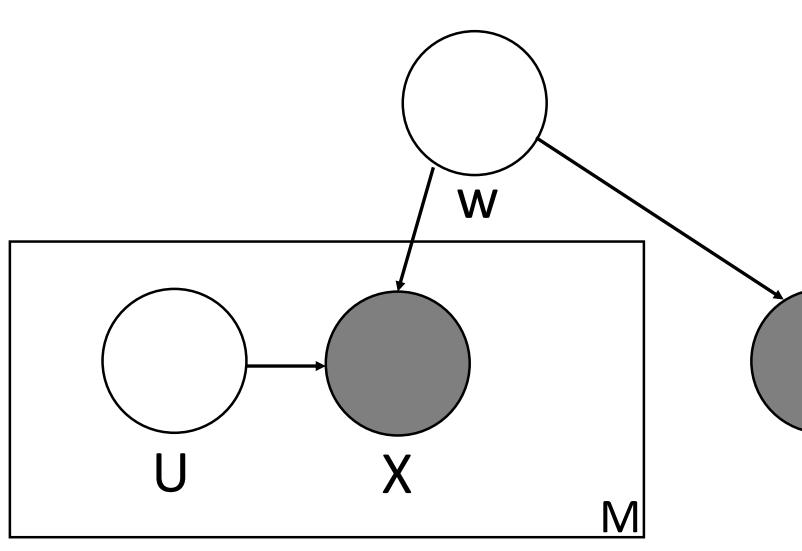
- A small labeled dataset $D_l = \{x_i, y_i\}_{i=1}^{N_l}$
- A larger unlabeled dataset $D_u = \{x_i\}_{i=N_1+1}^{N_1+N_u}$
- ► Utilize unlabeled data to help label data train

Self-Supervised Learning:

- Create pretext tasks with target t
- ► Use an encoder enc to generate representation
- ► Use a predictor g to learn the target t from the
- With loss l_{self} , we minimize

 $\mathbb{E}_{x,t\sim p(x,t)}l_{self}(g(enc(x)),t).$

Semi-Supervised Learning:


- Use f(x) to model y
- With supervised loss l_{sup} and consistency loss

 $\mathbb{E}_{x,y \sim p(x,y)} l_{sup}(f(x),y) + \beta \mathbb{E}_{x,x' \sim p(x'|x)} l_c(x)$

Our Assumptions

We assume the following data generation proce $\blacktriangleright W \sim p(W)$

- Individual noises U^j are independently drawn
- ► Inputs $X^j \sim p(X^j | W, U^j)$
- $\blacktriangleright Y \sim P(Y|W)$

CORE: Self- and Semi-supervised Tabular Learning with COnditional REgularizations

Xintian Han *^{,1} Rajesh Ranganath¹

¹New York University

earning	CORE
	Knockoff Generator: For any index set S, the knockoff \tilde{X} $(\tilde{X}, X) \stackrel{d}{=} (\tilde{X}, X)$
ning.	 ► For j ∈ S, the swapping operation ► We use DDLK to generate knockof With knockoffs, CORE creates X
on he representation	$\hat{X}(j)^j = \tilde{X}^j; \hat{X}(j)^j = \tilde{X}^j; $
s l_c we minimize (f(x), f(x'))	Self-supervised CORE minimizes $\mathbb{E}_{X} \ \det(\operatorname{enc}(X)) - X \ _{2}^{2} + \alpha \cdot \sum_{j=1}^{M} \mathbb{E}_{X,\hat{X}(j)} \ \operatorname{ng}(\operatorname{dec})(\operatorname{enc}(X)) \ $
	Semi-supervised CORE: Semi-supervised CORE minimizes
ess:	$\mathbb{E}_{X,Y} \mathbb{I}_{sup}(f(enc(X)), Y) + \beta \cdot \sum_{i=1}^{M} \mathbb{E}_{X,Y}$
n from p(U ^j)	Why CORE does not memorize the ► Conditional regularization $\sum_{i=1}^{M} ng(dec)(enc(X)) - f(X) = 1$
	can help us avoid memorizing the Individual noise is resampled in \hat{X}

- ► Memorize the individual noise, the conditional regularization term is large
- ► The conditional distribution still have information about W
- Memorizing W, the conditional regularization is not large

ORE

 $coff \tilde{X}$ satisfies $(\tilde{X}, X)_{swap[S]}$ tion exchanges \tilde{X}^j and X^j ckoffs.

 $\hat{X}(j)^{-j} = X^{-j}$ samples from $p(X^{j}|X^{-j})$

as no gradient.

 $|X(X)) - ng(dec)(enc(\hat{X}(j)))||_{2}^{2}$

 $\mathbb{E}_{X,\hat{X}(j)}l_{c}(f(enc(X)),f(enc(\hat{X}(j))))$

e the noise?

 $- \operatorname{ng}(\operatorname{dec})(\operatorname{enc}(\hat{X}(i)))\|_{2}^{2}$

the individual noise

Linear Simulat

Supervised

Self-Supervise

Higgs

Supervised

Self-supervis

Semi-supervi

Self + Semi-supe

Mortality Pred

Supervise

Self-supervi

Semi-superv

Self+Semi-supe

Experiments

ation	Method	MSE
d	Supervised Linear Regression	9444.25
	PCA	11.75
sed	CORE	1.17 ± 0.05
	Denoising Auto-encoder	108.93 ± 6.80
	Context Encoder	1.49 ± 0.05
	VIME	104.07 ± 3.00

Method	Accuracy
4-layer perceptron	0.6055 ± 0.0041
2-layer perceptron	0.6101 ± 0.0032
CORE	$\textbf{0.6692} \pm \textbf{0.0055}$
Denoising Auto-encoder	0.6088 ± 0.0055
Context Encoder	0.6096 ± 0.0154
VIME	0.6675 ± 0.0056
CORE	0.6189 ± 0.0078
VIME	0.6115 ± 0.0118
CORE	0.6667 ± 0.0058
VIME	0.6595 ± 0.0048
	4-layer perceptron 2-layer perceptron CORE Denoising Auto-encoder Context Encoder VIME CORE VIME CORE

diction	Method	AUC
ed	4-layer perceptron	0.7837 ± 0.0029
	2-layer perceptron	0.7790 ± 0.0021
<i>ised</i>	CORE	0.7941 ± 0.0051
	Denoising Auto-encoder	0.7918 ± 0.0053
	Context Encoder	0.7806 ± 0.0042
	VIME	0.7914 ± 0.0028
vised	VIME	0.7994 ± 0.0037
	CORE	0.7992 ± 0.0048
pervised	VIME	0.7889 ± 0.0037
	CORE	0.7930 ± 0.0027