ProtoSEED: Prototypical Self-Supervised Representation Distillation

Kyungmin Lee

Agency for Defense Development

Backgrounds

Self-supervised representation distillation (SEED)

- ✓ SSL works well on large networks (e.g. ResNet-50), but are not good on small networks (e.g. ResNet-18)
- ✓ Student networks can learn better representation by distilling the large SSL pre-trained models [1].

Knowledge Distillation (KD)

- ✓ Supervised learning: minimize the probability output of teacher and student models .
- ✓ Self-supervised learning: use prototypes to generate probability score and learn by self-distillation [2, 3].

Contrastive representation distillation

- ✓ Maximize the mutual information between teacher and student representations (e.g. CPC)
- ✓ Contrastive objective helps distillation in supervised learning [4]

Motivation

Our approach: prototypical KD + contrastive learning

- ✓ We adopt prototypes to generate probability score and distill the teacher's score to student.
- ✓ We propose novel Prototypical CPC objective where the critic measures the probabilistic discrepancy of teacher and student.

Methods

Prototypical Contrastive Predictive Coding

- ✓ Given features z_t and z_s , generate teacher probability p_t and student probability p_s by softmax operator with prototypes.
- \checkmark Set the critic by $e^{-H(p_t,p_s)} = e^{\sum_{k=1}^K p_t^{(k)} \log p_s^{(k)}}$

✓ Plug in to contrastive objective

$$\begin{split} I(T;S) &\geq \mathbb{E}\bigg[\log\frac{e^{-H(p_{t},p_{s})}}{\frac{1}{N}\sum_{j=0}^{N-1}e^{-H(p_{tj},p_{s})}}\bigg] = \mathbb{E}\bigg[\log\frac{\exp(p_{t}\cdot\tilde{z}_{s}/\tau_{s})}{\frac{1}{N}\sum_{j=0}^{N-1}\exp\left(p_{tj}\cdot\tilde{z}_{s}/\tau_{s}\right)}\bigg] \\ &\geq \mathbb{E}\bigg[\log\frac{\exp(p_{t}\cdot\tilde{z}_{s}/\tau_{s})}{\frac{1}{N}\sum_{j=0}^{N-1}\sum_{k=1}^{K}p_{tj}^{(k)}\exp\left(\tilde{z}_{s}^{(k)}/\tau_{s}\right)}\bigg] = \mathbb{E}\bigg[\log\frac{\exp(p_{t}\cdot\tilde{z}_{s}/\tau_{s})}{\sum_{k=1}^{K}q^{(k)}\exp\left(\tilde{z}_{s}^{(k)}/\tau_{s}\right)}\bigg] \end{split}$$

 $\checkmark q^{(k)} = \frac{1}{N} \sum_{j=0}^{N-1} p_{tj}^{(k)}$ acts as the prior of each prototype

Prior momentum

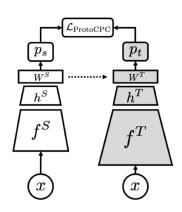
- ✓ Prior term contains information about negative samples.
- ✓ More accurate estimation of prior terms require large negative samples.
- ✓ We use momentum for prior term to avoid large batch.

Prototypical SEED

- ✓ Set student same as teacher.
- ✓ Train the student by following:

$$\min_{g^S, W^S} \mathbb{E}_{x \sim X} igg[\mathcal{L}_{ ext{ProtoCPC}}(p_t(x), p_s(x)) igg]$$

√ The teacher prototypes are copied from student's.



Experiments

Main results

√ Various teacher SSL representations to ResNet-18

	MoCo ResNet-50		SwAV ResNet-50		DINO ResNet-50		DINO DeiT-S/16	
	Linear	k-NN	Linear	k-NN	Linear	k-NN	Linear	k-NN
Teacher	71.1	61.9	75.3	65.7	75.3	67.5	77.0	74.3
Supervised SSL ProtoSEED	69.5 52.5 61.1(+8.6)	69.5 36.7 55.6(+18.9)	69.5 57.5 63.1(+5.6)	69.5 48.2 57.7(+9.4)	69.5 58.2 63.9(+5.7)	69.5 50.3 60.3(+10.0)	69.5 58.2 65.5(+7.3)	69.5 50.3 63.2(+12.9)

✓ ProtoSEED outperforms SSL and works well across different architectures

Comparison with SEED

✓ ProtoSEED outperforms SEED

Teacher	Method	Epochs	Linear	k-NN
МоСо	SEED	200	60.5	49.1
	ProtoSEED	100	61.1	55.6
SwAV	SEED SEED ProtoSEED ProtoSEED	100 200* 100 100*	61.1 62.6 63.1 63.9	57.7 57.0
DINO	ProtoSEED	100	63.9	60.3
	ProtoSEED	100*	65.3	60.7

- ✓ With multi-crops data augmentation (denoted by *), we achieve state-of-the-performance on ResNet-18.
- ✓ ProtoSEED outperforms SSL and works well across different architectures

References

- [1]. Fang, Zhiyuan, et al. "Seed: Self-supervised distillation for visual representation." arXiv preprint arXiv:2101.04731 (2021).
- [2]. Caron, Mathilde, et al. "Unsupervised learning of visual features by contrasting cluster assignments." arXiv preprint arXiv:2006.09882 (2020).
- [3]. Caron, Mathilde, et al. "Emerging properties in self-supervised vision transformers." arXiv preprint arXiv:2104.14294 (2021).
- [4]. Tian, Yonglong, Dilip Krishnan, and Phillip Isola. "Contrastive representation distillation." arXiv preprint arXiv:1910.10699 (2019).