Using self-supervision and augmentations to build insights into neural coding
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Abstract What can different classes of augmentations reveal about neural circuits?
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SSL in Neuroscience

(ii) Temporal augmentation (iii) Nonlocal yet similar views
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Macroscale (EEG, LFP) i < time emporal invariance

EEG and LFP measure electri-
cal activity across

superficial parts of the brain.
Each channel summarizes
the activity of thousands of
neurons. Macroscale data-
sets can be collected non-in-
vasively

Examples: [5, 6, 7]

(iv) Multi-modal augmentation

MuLtI-MODAL REPRESENTATION LEARNING: References & Acknowledgements

] MYOW: Azabou, Mehdi, et al. arXiv preprint arXiv:2102.10106, 2021.
] Swap-VAE: Liu, Ran, et al. NeurlPS, 2021.

] TCN: Sermanet, Pierre, et al. IEEE ICRA, 2018.

] RP: Doersch, Carl, Abhinav Gupta, and Alexei A. Efros. ICCV, 2015.

] EEG: Cheng, Joseph Y., et al. arXiv preprint arXiv:2007.04871, 2020.
Cross-modal: Peterson, Steven Michael, et al. bioRxiv, 2021.

] EEG: H. Banville et al. IEEE MLSP, 2019.

e - Setup: If we have simultaneous recordings across two modalities,
T we can pair them as views
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- Could learn a mapping between coarser and high-resolution mea-
sures of neural activity (LFP and neural spiking), highlighting shared
and modality-specific variability
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- Recent work [6] shows how this type of approach can be applied to
decode behavior

Augmentations that either preserve or break
iInformation can give us insights into neural coding!
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