Mine your own view: A self-supervised approach for learning representations of neural activity
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Approach

Traditionally, neural decoding has been performed through super-
vised approaches that aim to map specific behaviors or stimuli to
specific neural activity patterns through labeled data. However, the
representations learned through a supervised approach typically re-
quire simple trial structure and repetitive behaviors, and fail to gener-
alize to new datasets. Here, we ask whether we can use self-super-
vised learning principles to learn more robust and generalizable rep-
resentations of neural activity.

Self-supervised Learning

Self-supervised methods leverage augmentations to build invari-
ances into the representation.

BYOL [1] does this by using a predictor tasked to predict across rep-
resentations of two independently augmented views of the same
sample.

Challenge:

Current self-supervised learning (SSL) methods depend on hand-
crafted augmentations. What are the right augmentations for
building robust and generalizable neural representations?
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MYOW for neural decoding

We benchmark our approach, against standard methods, on datasets from trial-based reaching
datasets from non-human primates, and on free behavior in rodent visual cortex and hippocampus.
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Mine the dataset for positive examples!

1. Feed the anchor view and candidate views through the online and target nets

2. Perform a kNN search in the representation space to find a positive view

3. After the cascaded projection, predict the projection of the mined view from that
of the anchor view

MYOW for images

ResNet-18 ResNet-50 Table 1
Method CIFAR-10 CIFAR-100 CIFAR-20 Tiny ImageNet | CIFAR-10 CIFAR-100 CIFAR-20 MYOW applied to dif-
SimCLR * 91.80 66.83 _ 48 84 01.73 _ _ ferent image datasets
BYOL 91.71 66.70 76.90 51.56 92.12 67.87 77.38
MYQOW 92.10 67.91 78.10 52.58 93.18 68.69 78.87
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Chewie-1 Chewie-2 Mihi-1 Mihi-2 Rat-V1  Mouse-CAl ,T 5
Supervised  63.29 72.29 63.64  61.49 86.34 93.01 s
pi-VAE 65.63 60.60 62.44  63.26 73.10 82.48 < We show that by incorporating nonlocal but “similar” time points into the
AE 48.40 46.79 50.94  55.19 34.17 57.73 =g system, and predicting across these distinct time points, the network can
RP 59.21 50.69  57.78  53.76 82.93 82.12 = build time-invariant representations that allow for more faithful decoding
15 60.16 49.43 29.23 5410 8245 61.93 1 ) on downstream tasks and resilience to domain shift
SimCLR 61.36 51.62 5941 5629  81.03 81.94 z| (S Q '
BYOL 66.65 64.56  72.64 6744 8542 93.24 = Sae
MYOW 70.54 72.33 7340  71.80 88.01 93.70 Mt Website and code: https://nerdslab.github.io/myow/

Table 2 Accuracy in the prediction of brain states from spiking neural activity. We considered the following decod-
ing tasks (1) Reach direction decoding: Predict one of eight reach targets in the reaching task. (2) Arousal state de-

coding: Predict Rem, nRem, or Wake.
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